Package: bsitar 0.3.2.9000
bsitar: Bayesian Super Imposition by Translation and Rotation Growth Curve Analysis
The Super Imposition by Translation and Rotation (SITAR) model is a shape-invariant nonlinear mixed effect model that fits a natural cubic spline mean curve to the growth data and aligns individual-specific growth curves to the underlying mean curve via a set of random effects (see Cole, 2010 <doi:10.1093/ije/dyq115> for details). The non-Bayesian version of the SITAR model can be fit by using the already available R package 'sitar'. While the 'sitar' package allows modelling of a single outcome only, the 'bsitar' package offers great flexibility in fitting models of varying complexities, including joint modelling of multiple outcomes such as height and weight (multivariate model). Additionally, the 'bsitar' package allows for the simultaneous analysis of an outcome separately for subgroups defined by a factor variable such as gender. This is achieved by fitting separate models for each subgroup (for example males and females for gender variable). An advantage of this approach is that posterior draws for each subgroup are part of a single model object, making it possible to compare coefficients across subgroups and test hypotheses. Since the 'bsitar' package is a front-end to the R package 'brms', it offers excellent support for post-processing of posterior draws via various functions that are directly available from the 'brms' package. In addition, the 'bsitar' package includes various customized functions that allow for the visualization of distance (increase in size with age) and velocity (change in growth rate as a function of age), as well as the estimation of growth spurt parameters such as age at peak growth velocity and peak growth velocity.
Authors:
bsitar_0.3.2.9000.tar.gz
bsitar_0.3.2.9000.zip(r-4.5)bsitar_0.3.2.9000.zip(r-4.4)bsitar_0.3.2.9000.zip(r-4.3)
bsitar_0.3.2.9000.tgz(r-4.5-any)bsitar_0.3.2.9000.tgz(r-4.4-any)bsitar_0.3.2.9000.tgz(r-4.3-any)
bsitar_0.3.2.9000.tar.gz(r-4.5-noble)bsitar_0.3.2.9000.tar.gz(r-4.4-noble)
bsitar_0.3.2.9000.tgz(r-4.4-emscripten)bsitar_0.3.2.9000.tgz(r-4.3-emscripten)
bsitar.pdf |bsitar.html✨
bsitar/json (API)
NEWS
# Install 'bsitar' in R: |
install.packages('bsitar', repos = c('https://sandhu-ss.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/sandhu-ss/bsitar/issues
- berkeley - Berkeley Child Guidance Study Data
- berkeley_exdata - Berkeley Child Guidance Study Data for Females
- berkeley_exfit - Model Fit to the Berkeley Child Guidance Study Data for Females
Last updated 1 days agofrom:fc4eca9eec. Checks:8 OK. Indexed: yes.
Target | Result | Latest binary |
---|---|---|
Doc / Vignettes | OK | Feb 18 2025 |
R-4.5-win | OK | Feb 18 2025 |
R-4.5-mac | OK | Feb 18 2025 |
R-4.5-linux | OK | Feb 18 2025 |
R-4.4-win | OK | Feb 18 2025 |
R-4.4-mac | OK | Feb 18 2025 |
R-4.3-win | OK | Feb 18 2025 |
R-4.3-mac | OK | Feb 18 2025 |
Exports:%>%add_model_criterionbsitarexpose_model_functionsexpose_model_functions.bgmfitfitted_drawsfitted_draws.bgmfitgetNsObjectgrowthparametersgrowthparameters_comparisongrowthparameters_comparison.bgmfitgrowthparameters.bgmfitis.bgmfitloo_validationloo_validation.bgmfitmarginal_comparisonmarginal_comparison.bgmfitmarginal_drawsmarginal_draws.bgmfitoptimize_modeloptimize_model.bgmfitplot_conditional_effectsplot_conditional_effects.bgmfitplot_curvesplot_curves.bgmfitplot_ppcpredict_drawspredict_draws.bgmfitupdate_modelupdate_model.bgmfit
Dependencies:abindbackportsbayesplotBHbridgesamplingbrmsBrobdingnagcallrcheckmateclicodacodetoolscollapsecolorspacecpp11data.tabledescdigestdistributionaldplyrfansifarverforcatsfurrrfuturefuture.applygenericsggplot2ggridgesglobalsgluegridExtragtableinlineinsightisobandlabelinglatticelifecyclelistenvloomagrittrmarginaleffectsMASSMatrixmatrixStatsmgcvmunsellmvtnormnleqslvnlmenumDerivparallellypillarpkgbuildpkgconfigplyrposteriorprocessxpspurrrQuickJSRR6rbibutilsRColorBrewerRcppRcppEigenRcppParallelRdpackreshape2rlangrsamplerstanrstantoolsscalessitarsliderStanHeadersstringistringrtensorAtibbletidyrtidyselectutf8vctrsviridisLitewarpwithr
Bayesian SITAR model - An introduction
Rendered fromBayesian_SITAR_model_An_Introduction.Rmd
usingknitr::rmarkdown
on Feb 18 2025.Last update: 2025-02-06
Started: 2024-02-04
Bayesian SITAR model fit
Rendered fromBayesian_SITAR_model_fit.Rmd
usingknitr::rmarkdown
on Feb 18 2025.Last update: 2025-02-06
Started: 2025-01-30