
Package: bsitar (via r-universe)
September 13, 2024

Type Package

Title Bayesian Super Imposition by Translation and Rotation Growth
Curve Analysis

Version 0.2.2.01

Maintainer Satpal Sandhu <satpal.sandhu@bristol.ac.uk>

Description The Super Imposition by Translation and Rotation (SITAR)
model is a shape-invariant nonlinear mixed effect model that
fits a natural cubic spline mean curve to the growth data, and
aligns individual-specific growth curves to the underlying mean
curve via a set of random effects (see Cole, 2010
<doi:10.1093/ije/dyq115> for details). The non-Bayesian version
of the SITAR model can be fit by using an already available R
package 'sitar'. While 'sitar' package allows modelling of a
single outcome only, the 'bsitar' package offers a great
flexibility in fitting models of varying complexities that
include joint modelling of multiple outcomes such as height and
weight (multivariate model). Also, the 'bsitar' package allows
simultaneous analysis of an outcome separately for sub groups
defined by a factor variable such as gender. This is achieved
by fitting separate models for each sub group (such as males
and females for gender variable). An advantage of such approach
is that posterior draws for each sub group are part of a single
model object that makes it possible to compare coefficients
across groups and test hypotheses. As 'bsitar' package is a
front-end to the R package 'brms', it offers an excellent
support for post-processing of posterior draws via various
functions that are directly available from the 'brms' package.
In addition, the 'bsitar' package include various customized
functions that allow estimation and visualization growth curves
such as distance (increase in size with age) and velocity
(change in growth rate as a function of age).

License GPL-2

Depends R (>= 3.6)

Imports brms (>= 2.21.0), rstan (>= 2.32.6), loo (>= 2.7.0), dplyr (>=

1

https://doi.org/10.1093/ije/dyq115

2 Contents

1.1.3), rlang (>= 1.1.2), Rdpack (>= 2.6.1), insight (>=
0.20.3), data.table (>= 1.15.4), collapse (>= 2.0.15),
marginaleffects (>= 0.21.0), sitar, magrittr, methods, utils

Suggests ggplot2 (>= 3.4.0), bayesplot (>= 1.11.0), posterior (>=
1.3.1), testthat (>= 3.0.0), dtplyr (>= 1.3.1), checkmate (>=
2.3.1), doParallel (>= 1.0.17), parallel (>= 4.3.1), foreach
(>= 1.5.2), ggridges (>= 0.5.6), jtools (>= 2.2.2), tidyr,
nlme, purrr, future, future.apply, forcats, patchwork, tibble,
pracma, extraDistr, bookdown, knitr, kableExtra, rmarkdown,
spelling, Hmisc, R.rsp, graphics, grDevices, ggtext, glue,
stats

URL https://github.com/Sandhu-SS/bsitar

BugReports https://github.com/Sandhu-SS/bsitar/issues

VignetteBuilder knitr, R.rsp

RdMacros Rdpack

Config/testthat/edition 3

Encoding UTF-8

LazyData true

LazyLoad no

LazyDataCompression xz

NeedsCompilation no

Roxygen list(markdown = TRUE)

RoxygenNote 7.3.1

Language en-US

Repository https://sandhu-ss.r-universe.dev

RemoteUrl https://github.com/sandhu-ss/bsitar

RemoteRef HEAD

RemoteSha 431fc2ca958025737fe368cb16253070e14641a9

Contents
add_model_criterion.bgmfit . 3
berkeley . 6
berkeley_exdata . 7
berkeley_exfit . 8
bsitar . 9
expose_model_functions.bgmfit . 41
fitted_draws.bgmfit . 43
getNsObject . 49
growthparameters.bgmfit . 50
growthparameters_comparison.bgmfit . 57

https://github.com/Sandhu-SS/bsitar
https://github.com/Sandhu-SS/bsitar/issues

add_model_criterion.bgmfit 3

loo_validation.bgmfit . 69
marginal_comparison.bgmfit . 73
marginal_draws.bgmfit . 83
optimize_model.bgmfit . 94
plot_conditional_effects.bgmfit . 98
plot_curves.bgmfit . 104
plot_ppc.bgmfit . 114
predict_draws.bgmfit . 118
update_model.bgmfit . 124

Index 127

add_model_criterion.bgmfit

Add model fit criteria to model

Description

The add_model_criterion() is a wrapper around the brms::add_criterion(). Note that argu-
ments compare and pointwise are relevant only for brms::add_loo whereas arguments summary,
robust, and probs ignored except for the brms::bayes_R2().

Usage

S3 method for class 'bgmfit'
add_model_criterion(
model,
criterion = c("loo", "waic"),
ndraws = NULL,
draw_ids = NULL,
compare = TRUE,
pointwise = FALSE,
model_names = NULL,
summary = TRUE,
robust = FALSE,
probs = c(0.025, 0.975),
newdata = NULL,
resp = NULL,
cores = 1,
deriv_model = NULL,
verbose = FALSE,
expose_function = FALSE,
usesavedfuns = NULL,
clearenvfuns = NULL,
envir = NULL,
...

)

add_model_criterion(model, ...)

4 add_model_criterion.bgmfit

Arguments

model An object of class bgmfit.

criterion Names of model fit criteria to compute. Currently supported are "loo", "waic",
"kfold", "loo_subsample", "bayes_R2" (Bayesian R-squared), "loo_R2" (LOO-
adjusted R-squared), and "marglik" (log marginal likelihood).

ndraws A positive integer indicating the number of posterior draws to be used in esti-
mation. If NULL (default), all draws are used.

draw_ids An integer indicating the specific posterior draw(s) to be used in estimation (de-
fault NULL).

compare A flag indicating if the information criteria of the models should be compared
to each other via loo_compare.

pointwise A flag indicating whether to compute the full log-likelihood matrix at once or
separately for each observation. The latter approach is usually considerably
slower but requires much less working memory. Accordingly, if one runs into
memory issues, pointwise = TRUE is the way to go.

model_names If NULL (the default) will use model names derived from deparsing the call. Oth-
erwise will use the passed values as model names.

summary A logical indicating whether only the estimate should be computed (TRUE), or
estimate along with SE and CI should be returned (FALSE, default). Setting
summary as FALSE will increase the computation time. Note that summary =
FALSE is must to get the correct estimates when re_formula = NULL.

robust A logical to specify the summarize options. If FALSE (the default) the mean
is used as the measure of central tendency and the standard deviation as the
measure of variability. If TRUE, the median and the median absolute deviation
(MAD) are applied instead. Ignored if summary is FALSE.

probs The percentiles to be computed by the quantile function. Only used if summary
is TRUE.

newdata An optional data frame to be used in estimation. If NULL (default), the newdata
is retrieved from the model.

resp A character string (default NULL) to specify response variable when process-
ing posterior draws for the univariate_by and multivariate models. See
bsitar() for details on univariate_by and multivariate models

cores Number of cores to be used when running the parallel computations (if future
= TRUE). On non-Windows systems this argument can be set globally via the
mc.cores option. For the default NULL option, the number of cores are set au-
tomatically by calling the future::availableCores(). The number of cores
used are the maximum number of cores avaialble minus one, i.e., future::availableCores()
- 1.

deriv_model A logical to specify whether to estimate velocity curve from the derivative func-
tion, or the differentiation of the distance curve. The argument deriv_model is
set to TRUE for those functions which need velocity curve such as growthparameters()
and plot_curves(), and NULL for functions which explicitly use the distance
curve (i.e., fitted values) such as loo_validation() and plot_ppc().

add_model_criterion.bgmfit 5

verbose An optional argument (logical, default FALSE) to indicate whether to print infor-
mation collected during setting up the object(s).

expose_function

An optional logical argument to indicate whether to expose Stan functions (de-
fault FALSE). Note that if user has already exposed Stan functions during model
fit by setting expose_function = TRUE in the bsitar(), then those exposed
functions are saved and can be used during post processing of the posterior
draws and therefore expose_function is by default set as FALSE in all post
processing functions except optimize_model(). For optimize_model(), the
default setting is expose_function = NULL. The reason is that each optimized
model has different Stan function and therefore it need to be re exposed and
saved. The expose_function = NULL implies that the setting for expose_function
is taken from the original model fit. Note that expose_function must be set to
TRUE when adding fit criteria and/or bayes_R2 during model optimization.

usesavedfuns A logical (default NULL) to indicate whether to use the already exposed and saved
Stan functions. Depending on whether the user have exposed Stan functions
within the bsitar() call via expose_functions argument in the bsitar(), the
usesavedfuns is automatically set to TRUE (if expose_functions = TRUE) or
FALSE (if expose_functions = FALSE). Therefore, manual setting of usesavedfuns
as TRUE/FALSE is rarely needed. This is for internal purposes only and mainly
used during the testing of the functions and therefore should not be used by users
as it might lead to unreliable estimates.

clearenvfuns A logical to indicate whether to clear the exposed function from the environment
(TRUE) or not (FALSE). If NULL (default), then clearenvfuns is set as TRUE when
usesavedfuns is TRUE, and FALSE if usesavedfuns is FALSE.

envir Environment used for function evaluation. The default is NULL which will set
parent.frame() as default environment. Note that since most of post process-
ing functions are based on brms, the functions needed for evaluation should
be in the .GlobalEnv. Therefore, it is strongly recommended to set envir =
globalenv() (or envir = .GlobalEnv). This is particularly true for the deriva-
tives such as velocity curve.

... Further arguments passed to brms::fitted.brmsfit() and brms::predict()
functions.

Value

An object of class class bgmfit with fit criteria added.

Author(s)

Satpal Sandhu <satpal.sandhu@bristol.ac.uk>

See Also

brms::add_loo brms::add_loo brms::add_ic() brms::add_waic() brms::bayes_R2()

6 berkeley

Examples

Fit Bayesian SITAR model

To avoid mode estimation which takes time, the Bayesian SITAR model fit to
the 'berkeley_exdata' has been saved as an example fit ('berkeley_exfit').
See 'bsitar' function for details on 'berkeley_exdata' and 'berkeley_exfit'.

model <- berkeley_exfit

model <- add_model_criterion(model, criterion = c("waic"))

berkeley Berkeley Child Guidance Study Data

Description

Data provide longitudinal growth records for 136 children.

Usage

berkeley

Format

A data frame with 4884 observations on the following 10 variables:

id factor with levels 201-278 for males, and 301-385 for females

age years, numeric vector

height cm, numeric vector

weight kg, numeric vector

stem.length cm, numeric vector

bi.acromial cm, numeric vector

bi.iliac cm, numeric vector

leg.circ cm, numeric vector

strength lb, numeric vector

sex factor with level 1 male and level 2 female

berkeley_exdata 7

Details

Data originally included as an appendix in the book “Physical growth of California boys and girls
from birth to eighteen years" authored by Tuddenham and Snyder (1954), and later used as an
example dataset in the sitar (Cole 2022) package after correcting for the transcription errors.

A detailed description of the data including the frequency of measurements per year is provided in
the sitar package. (Cole 2022). Briefly, the data comprise of repeated growth measurements made
on 66 boys and 70 girls (birth to 21 years). Children were born in 1928-29 (Berkeley, California)
and were of north European ancestry. Measurements were made at the following ages: 0 (i.e, at
birth), 0.085 year, 0.25 to 2 years (every 3 month), 2 to 8 years (annually), and 8 to 21 years (6-
monthly). The children were measured for height, weight (undressed), stem length, biacromial
diameter, bi-iliac diameter, leg circumference, and dynamo metric strength.

Value

A data frame with 10 columns.

Author(s)

Satpal Sandhu <satpal.sandhu@bristol.ac.uk>

References

Cole T (2022). sitar: Super Imposition by Translation and Rotation Growth Curve Analysis. R
package version 1.3.0, https://CRAN.R-project.org/package=sitar.

Tuddenham RD, Snyder MM (1954). “Physical growth of California boys and girls from birth
to eighteen years.” Publications in Child Development. University of California, Berkeley, 1(2),
183–364. https://pubmed.ncbi.nlm.nih.gov/13217130/.

berkeley_exdata Berkeley Child Guidance Study Data for females

Description

A subset of the berkeley data that contains longitudinal growth data for 70 females (8 to 18 years of
age).

Usage

berkeley_exdata

Format

A data frame with following 3 variables:

id factor variable
age years, numeric vector
height cm, numeric vector

https://CRAN.R-project.org/package=sitar
https://pubmed.ncbi.nlm.nih.gov/13217130/

8 berkeley_exfit

Details

A detailed description of the full data is provided in the berkeley data.

Value

A data frame with 3 columns.

Author(s)

Satpal Sandhu <satpal.sandhu@bristol.ac.uk>

berkeley_exfit Model fit to the Berkeley Child Guidance Study Data for females

Description

Bayesian SITAR model fit to the berkeley_exdata data (70 females, 8 to 18 years of age).

Usage

berkeley_exfit

Format

Model fit comprising summary of posterior draws.

Details

Data details are provided in the berkeley_exdata

Value

An object of class bgmfit with posterior draws.

Author(s)

Satpal Sandhu <satpal.sandhu@bristol.ac.uk>

bsitar 9

bsitar Fit Bayesian SITAR growth curve model

Description

The bsitar() is the main function that fits the Bayesian version of the super imposition by transla-
tion and rotation (SITAR) model. The SITAR model is a nonlinear mixed effects model that has been
used extensively to summarize growth processes (such as height and weight) from early childhood
through the adulthood. The frequentist version of the SITAR model can be fit by using an already
available R package, sitar (Cole 2022). Besides Bayesian implementation, the bsitar package
greatly enhances the modelling capabilities of the SITAR. For example, in addition to the univariate
analysis (i.e, modelling a single outcome), the bsitar allows univariate-by-subgroup and multivari-
ate model fitting. In univariate-by-subgroup analysis, a single outcome is simultaneously analysed
for subgroups defined by a factor variable such as gender. An advantage of univariate-by-subgroup
analysis is that posterior draws for each sub group are part of a single model object that makes it
possible to compare coefficients across groups and also test various hypotheses. The multivariate
analysis involves simultaneous joint modelling of two or more outcomes.

Usage

bsitar(
x,
y,
id,
data,
df = 4,
knots = NA,
fixed = a + b + c,
random = a + b + c,
xoffset = mean,
bstart = xoffset,
cstart = 0,
xfun = NULL,
yfun = NULL,
bound = 0.04,
terms_rhs = NULL,
a_formula = ~1,
b_formula = ~1,
c_formula = ~1,
d_formula = ~1,
s_formula = ~1,
a_formula_gr = ~1,
b_formula_gr = ~1,
c_formula_gr = ~1,
d_formula_gr = ~1,
a_formula_gr_str = NULL,
b_formula_gr_str = NULL,

10 bsitar

c_formula_gr_str = NULL,
d_formula_gr_str = NULL,
d_adjusted = FALSE,
sigma_formula = NULL,
sigma_formula_gr = NULL,
sigma_formula_gr_str = NULL,
sigma_formula_manual = NULL,
sigmax = NULL,
sigmadf = 4,
sigmaknots = NA,
sigmafixed = a + b + c,
sigmarandom = "",
sigmaxoffset = mean,
sigmabstart = sigmaxoffset,
sigmacstart = 0,
sigmaxfun = NULL,
sigmabound = 0.04,
dpar_formula = NULL,
autocor_formula = NULL,
family = gaussian(),
custom_family = NULL,
custom_stanvars = NULL,
group_arg = list(groupvar = NULL, by = NULL, cor = un, cov = NULL, dist = gaussian),
sigma_group_arg = list(groupvar = NULL, by = NULL, cor = un, cov = NULL, dist =

gaussian),
univariate_by = list(by = NA, cor = un, terms = subset),
multivariate = list(mvar = FALSE, cor = un, rescor = TRUE),
a_prior_beta = normal(ymean, ysd, autoscale = TRUE),
b_prior_beta = normal(0, 3.5, autoscale = FALSE),
c_prior_beta = normal(0, 1.5, autoscale = FALSE),
d_prior_beta = normal(0, 1, autoscale = TRUE),
s_prior_beta = normal(lm, lm, autoscale = FALSE),
a_cov_prior_beta = normal(0, 5, autoscale = FALSE),
b_cov_prior_beta = normal(0, 1, autoscale = FALSE),
c_cov_prior_beta = normal(0, 0.1, autoscale = FALSE),
d_cov_prior_beta = normal(0, 1, autoscale = FALSE),
s_cov_prior_beta = normal(lm, lm, autoscale = FALSE),
a_prior_sd = normal(0, ysd, autoscale = TRUE),
b_prior_sd = normal(0, 2, autoscale = FALSE),
c_prior_sd = normal(0, 1.25, autoscale = FALSE),
d_prior_sd = normal(0, 1, autoscale = TRUE),
a_cov_prior_sd = normal(0, 5, autoscale = FALSE),
b_cov_prior_sd = normal(0, 1, autoscale = FALSE),
c_cov_prior_sd = normal(0, 0.1, autoscale = FALSE),
d_cov_prior_sd = normal(0, 1, autoscale = FALSE),
a_prior_sd_str = NULL,
b_prior_sd_str = NULL,
c_prior_sd_str = NULL,

bsitar 11

d_prior_sd_str = NULL,
a_cov_prior_sd_str = NULL,
b_cov_prior_sd_str = NULL,
c_cov_prior_sd_str = NULL,
d_cov_prior_sd_str = NULL,
sigma_prior_beta = normal(0, 1, autoscale = FALSE),
sigma_cov_prior_beta = normal(0, 0.5, autoscale = FALSE),
sigma_prior_sd = normal(0, 0.25, autoscale = FALSE),
sigma_cov_prior_sd = normal(0, 0.15, autoscale = FALSE),
sigma_prior_sd_str = NULL,
sigma_cov_prior_sd_str = NULL,
rsd_prior_sigma = normal(0, ysd, autoscale = FALSE),
dpar_prior_sigma = normal(0, ysd, autoscale = TRUE),
dpar_cov_prior_sigma = normal(0, 1, autoscale = FALSE),
autocor_prior_acor = uniform(-1, 1, autoscale = FALSE),
autocor_prior_unstr_acor = lkj(1),
gr_prior_cor = lkj(1),
gr_prior_cor_str = lkj(1),
sigma_prior_cor = lkj(1),
sigma_prior_cor_str = lkj(1),
mvr_prior_rescor = lkj(1),
init = NULL,
init_r = NULL,
a_init_beta = random,
b_init_beta = random,
c_init_beta = random,
d_init_beta = random,
s_init_beta = random,
a_cov_init_beta = random,
b_cov_init_beta = random,
c_cov_init_beta = random,
d_cov_init_beta = random,
s_cov_init_beta = random,
a_init_sd = random,
b_init_sd = random,
c_init_sd = random,
d_init_sd = random,
a_cov_init_sd = random,
b_cov_init_sd = random,
c_cov_init_sd = random,
d_cov_init_sd = random,
sigma_init_beta = random,
sigma_cov_init_beta = random,
sigma_init_sd = random,
sigma_cov_init_sd = random,
gr_init_cor = random,
sigma_init_cor = random,
rsd_init_sigma = random,

12 bsitar

dpar_init_sigma = random,
dpar_cov_init_sigma = random,
autocor_init_acor = random,
autocor_init_unstr_acor = random,
mvr_init_rescor = random,
r_init_z = random,
vcov_init_0 = FALSE,
jitter_init_beta = NULL,
jitter_init_sd = NULL,
jitter_init_cor = NULL,
prior_data = NULL,
init_data = NULL,
init_custom = NULL,
verbose = FALSE,
expose_function = FALSE,
get_stancode = FALSE,
get_standata = FALSE,
get_formula = FALSE,
get_stanvars = FALSE,
get_priors = FALSE,
get_priors_eval = FALSE,
get_init_eval = FALSE,
validate_priors = FALSE,
set_self_priors = NULL,
add_self_priors = NULL,
set_replace_priors = NULL,
set_same_priors_hierarchy = FALSE,
outliers = NULL,
unused = NULL,
chains = 4,
iter = 2000,
warmup = floor(iter/2),
thin = 1,
cores = getOption("mc.cores", "optimize"),
backend = getOption("brms.backend", "rstan"),
threads = getOption("brms.threads", "optimize"),
opencl = getOption("brms.opencl", NULL),
normalize = getOption("brms.normalize", TRUE),
algorithm = getOption("brms.algorithm", "sampling"),
control = list(adapt_delta = 0.8, max_treedepth = 15),
empty = FALSE,
rename = TRUE,
pathfinder_args = NULL,
pathfinder_init = FALSE,
sample_prior = "no",
save_pars = NULL,
drop_unused_levels = TRUE,
stan_model_args = list(),

bsitar 13

refresh = NULL,
silent = 1,
seed = 123,
save_model = NULL,
fit = NA,
file = NULL,
file_compress = TRUE,
file_refit = getOption("brms.file_refit", "never"),
future = getOption("future", FALSE),
parameterization = "ncp",
...

)

Arguments

x Predictor variable (typically age in years). For univariate model, the x is
a single variable whereas for univariate_by and multivariate models, the x
can be same for sub models, or different for each sub model. For example, when
fitting a bivariate model, the x = list(x1, x2) specifies that x1 is the predictor
variable for the first sub model, and x2 for the second sub model. To specify x1
as a common predictor variable for both sub models, the argument x is defined
as x = list(x1) or simply x = x1.

y Response variable (e.g., repeated height measurements). For univariate and
univariate_by models, y is specified as a single variable. For univariate_by
model, the response vector for each sub model is created and named internally
based on the factor levels of the variable that is used to set up the univariate_by
model. As an example, the model specified as univariate_by = sex creates re-
sponse vectors Female and Male when Female is the first level and Male is the
second level of the sex variable. For multivariate model, the response vari-
ables are specified as a list such as y = list(y1, y2) where y1 is the response
variable for the first sub model and y2 for the second sub model. Note that
for multivariate model, data are not stacked but rather response vectors are
separate variables in the data and are of same length.

id A factor variable uniquely identifying the groups (e.g., individuals) in the data
frame. For univariate_by and multivariate models, the id can be same
(typically) for sub models or different for each sub model (see argument x for
details on setting different arguments for sub models).

data Data frame containing variables such as x, y, id etc.

df Degrees of freedom for the natural cubic spline design matrix (default 4). The
df is internally used to construct the knots (quantiles of x distribution) that are
then used in the construction of the spline design matrix. For univariate_by
and multivariate models, the df can be same (e.g., df = 4) for sub models or
different for each sub model such as df=list(4, 5) where df is 4 is for the first
sub model, and 5 for the second sub model.

knots A numeric vector vector specifying the knots for the natural cubic spline design
matrix (default NULL) Note that df and knots can not be specified together, and
also both of them can not be NULL. In other words, either df or knots must be

14 bsitar

specified. Like df, the knots can be same for sub models or different for each
sub model when fitting univariate_by and multivariate models (see df for
details).

fixed A character string specifying the fixed effects structure (default 'a+b+c'). Note
that different fixed effect structures can be specified when fitting univariate_by
and multivariate models. As an example, fixed = list('a+b+c', 'a+b')
implies that the fixed effect structure for the first sub model is 'a+b+c', and
'a+b' for the second sub model.

random A character string specifying the random effects structure (default 'a+b+c').
The approach used in setting the random is same as described above for the
fixed effects structure (see fixed).

xoffset An optional character string, or a numeric value to set up the origin of the predic-
tor variable, x (i.e., centering of x). The options available are 'mean' (mean of
x, i.e., mean(x)), 'max' (maximum value of x, i.e., max(x)), 'min' (minimum
value of x, i.e., min(x)), 'apv' (age at peak velocity estimated from the velocity
curve derived from the simple linear model fit to the data), or any real number
such as xoffset = 12. The default is xoffset = 'mean'. For univariate_by
and multivariate models, the xoffset can be same for sub models or differ-
ent for each sub model (see argument x for details on setting different arguments
for sub models). Note that if xoffset is a numeric value, it will be internally
transformed (log or sqrt) depending on the xfun argument. Similarly, when
xoffset is 'mean', 'min' or 'max', then these value are retrieved after the log
or sqrt transformation of the predictor variable, 'x'.

bstart An optional character string, or a numeric value to set up the origin of the
fixed effect parameter b. The argument bstart can be used to set up the lo-
cation parameter for the location-scale based priors (such as normal()) via
b_prior_beta argument and/or the initial value via the b_init_beta argument.
The options available to set up the bstart are same as described above for the
xoffset i.e., 'mean', 'min', 'max', 'apv' or a real number such as 12. The
default is same as xoffset i.e., bstart = 'xoffset'. For univariate_by and
multivariate models, the xoffset can be same for sub models (typically),
or different for each sub model (see argument x for details on setting different
arguments for sub models).

cstart An optional character string, or a numeric value to set up the origin of the
fixed effect parameter c. The argument cstart can be used to set up the lo-
cation parameter for the location-scale based priors (such as normal()) via
c_prior_beta argument and/or the initial value via the c_init_beta argument.
The options available to set up the cstart are 'pv' (peak velocity estimated
from the velocity curve derived from the simple linear model fit to the data), or
a real number such as 1. Note that since parameter c is estimated on the expo-
nential scale, the argument cstart should be adjusted accordingly. The default
cstart is ’0’ i.e., cstart = '0'. For univariate_by and multivariate mod-
els, the xoffset can be same for sub models (typically), or different for each
sub model (see argument x for details on setting different arguments for sub
models).

xfun An optional character string to specify the transformation of the predictor vari-
able, The default is NULL indicating that no transformation is applied i.e., model

bsitar 15

is fit to the data with original scale of the x. Available transformation options are
'log' (logarithmic transformation) and 'sqrt' (square root transformation).
For univariate_by and multivariate models, the xfun can be same for sub
models (typically), or different for each sub model (see argument x for details
on setting different arguments for sub models).

yfun An optional character string to specify the transformation of the response vari-
able, The default is NULL, indicating that no transformation is applied i.e., model
is fit to the data with original scale of the y. Available transformation options are
'log' (logarithmic transformation) and 'sqrt' (square root transformation).
For univariate_by and multivariate models, the xfun can be same for sub
models (typically), or different for each sub model (see argument x for details
on setting different arguments for sub models).

bound An optional real number to extend the span of the predictor variable x by a small
value (default 0.04). See package sitar::sitar() for details. For univariate_by
and multivariate models, the bound can be same for sub models (typically),
or different for each sub model (see argument x for details on setting different
arguments for sub models).

terms_rhs An optional character string (default NULL) to specify terms on the right hand
side of the response variable (separated by |) but before the formula tilde sign
i.e., ~. The terms_rhs is used when fitting a measurement error model. As
an example, consider fitting a model with measurement error in the response
variable which is specified in the brms::brmsformula() as brmsformula(y |
mi(sdy) ~ ..). In this example, the mi(sdy) is passed to brms::brmsformula()
as terms_rhs = mi(sdy). For multivariate model, each outcome can have its
own measurement error variable that can be specified as follows:
terms_rhs = list(mi(sdy1), mi(sdy2)). Note that brms::brmsformula()
does not allow combining mi() with the subset() formulation that is used for
fitting univariate_by model.

a_formula Formula for the fixed effect parameter, a (default ~ 1). User can specify different
formula when fitting univariate_by and multivariate models. As an exam-
ple a_formula = list(~1, ~1 + cov) implies that the a_formula for the first
sub model includes an intercept only whereas the second sub model includes an
intercept and a covariate, cov. The covariate(s) can be continuous variable(s) or
factor variable(s). For factor covariates, dummy variables are created internally
via the stats::model.matrix()). The formula can include any combination
of continuous and factor variables as well as their interactions.

b_formula Formula for the fixed effect parameter, b (default ~ 1). See a_formula for de-
tails.

c_formula Formula for the fixed effect parameter, c (default ~ 1). See a_formula for de-
tails.

d_formula Formula for the fixed effect parameter, d (default ~ 1). See a_formula for de-
tails.

s_formula Formula for the fixed effect parameter, s (default ~ 1). The s_formula sets
up the the spline design matrix. Typically, covariate(s) are not included in the
s_formula to limit the population curve to be single curve for the whole data.
In fact, the sitar::sitar() does not provide any option to include covariates

16 bsitar

in the s_formula, However, bsitar package allows inclusion of covariates but
the user need to justify the modelling of separate curves for each category when
covariate is a factor variable.

a_formula_gr Formula for the random effect parameter, a (default ~ 1). Similar to a_formula,
user can specify different formula when fitting univariate_by and multivariate
models and formula can include continuous and/or factor variable(s) including
their interactions as covariates (see a_formula for details). In addition to setting
up the design matrix for the random effect parameter a, user can set up the group
identifier and the correlation structure for random effects via the vertical bar ||
approach. For example, consider only an intercept for the random effects a, b,
and c specified as a_formula_gr = ~1, b_formula_gr = ~1 and c_formula_gr
= ~1. To specify the group identifier (e.g., id) and an unstructured correlation
structure, the formula argument as specified as follows:
a_formula_gr = ~ (1|i|id)
b_formula_gr = ~ (1|i|id)
c_formula_gr = ~ (1|i|id)
where i within the vertical bars || is just a placeholder. A common identifier
(i.e., i) shared across random effect formulas are modeled as unstructured corre-
lated. For more details on the the vertical bar approach, please see brms::brm().
As explained below, an alternative approach to set up the group identifier and
the correlation structure is to use group_by argument. In other words, to achieve
the same set up as defined above by using the vertical bar approach, user can just
specify the design matrix part of the formula as a_formula_gr = ~ 1
b_formula_gr = ~ 1
c_formula_gr = ~ 1
and use the group_by argument as group_by = list(groupvar = id, cor = un)
where id specifies the group identifier and un sets up the unstructured correla-
tion structure. See group_by argument for details.

b_formula_gr Formula for the random effect parameter, b (default ~ 1). See a_formula_gr for
details.

c_formula_gr Formula for the random effect parameter, c (default ~ 1). See a_formula_gr for
details.

d_formula_gr Formula for the random effect parameter, d (default ~ 1). See a_formula_gr for
details.

a_formula_gr_str

Formula for the random effect parameter, a (default NULL) when fitting a hier-
archical model with three or more levels of hierarchy. An example is model
applied to the data that comprise repeated measurements (level 1) on individ-
uals (level 2) nested further within the growth studies (level 3). Note that
When using a_formula_gr_str argument, only the vertical bar approach (see
a_formula_gr) can be used to set up the group identifiers and the correlation
structure. An example of setting up the formula for a three level model with
random effect parameter a, b is as follows:
a_formula_gr_str = ~ (1|i|id:study) + (1|i2|study)
b_formula_gr_str = ~ (1|i|id:study) + (1|i2|study)
c_formula_gr_str = ~ (1|i|id:study) + (1|i2|study)
where |i| and |i2| set up the unstructured correlation structure for individ-
ual and study level random effects. Note that |i| and |i2| need to be distinct

bsitar 17

because random effect parameters are not allowed to be correlated across differ-
ent levels of hierarchy. It is worth mentioning that user can set up model with
any number of hierarchical levels and include covariate into the random effect
formula.

b_formula_gr_str

Formula for the random effect parameter, b (default NULL) when fitting a hier-
archical model with three or more levels of hierarchy. See a_formula_gr_str
for details.

c_formula_gr_str

Formula for the random effect parameter, c (default NULL) when fitting a hier-
archical model with three or more levels of hierarchy. See a_formula_gr_str
for details.

d_formula_gr_str

Formula for the random effect parameter, d (default NULL) when fitting a hier-
archical model with three or more levels of hierarchy. See a_formula_gr_str
for details.

d_adjusted A logical indicator to set up the scale of predictor variable x when fitting the
model with random effect parameter d. The coefficient of parameter d is es-
timated as a linear function of x i.e., d * x. If FALSE (default), the original x
is used. When d_adjusted = TRUE, the x is adjusted for the timing (b) and
intensity (c) parameters as x - b) * exp(c) i.e., d * ((x-b)*exp(c)). The ad-
justed scale of x reflects individual developmental age rather than chronological
age. This makes d more sensitive to the timing of puberty in individuals. See
sitar::sitar() function for details.

sigma_formula Formula for the fixed effect distributional parameter, sigma. The sigma_formula
sets up the fixed effect design matrix that may include continuous and/or fac-
tor variables (and their interactions) as covariates(s) for the distributional pa-
rameter. In other words, setting up the covariates for sigma_formula is same
as for any other fixed parameter such as a (see a_formula for details). Note
that sigma_formula estimates sigma parameter at log scale. By default, the
sigma_formula is NULL because the brms::brm() itself models the sigma as a
residual standard deviation (RSD) parameter at the link scale. The sigma_formula
along with the arguments sigma_formula_gr and sigma_formula_gr_str al-
low estimating the scale parameters as random effects for sigma. The set up
to specify the fixed and random effects for sigma is similar to setting fixed and
random effect structures for other model parameters such as a, b, and c. It is im-
portant to note that an alternative way to set up the fixed effect design matrix for
the distributional parameter sigma is to use the dpar_formula argument. An ad-
vantage of dpar_formula over sigma_formula is that user can specify the lin-
ear and nonlinear formulation as allowed by the brms::lf() and brms::nlf()
syntax. The brms::lf() and brms::nlf() offer flexibility in centering the
predictors and also allows enabling/disabling of cell mean centering when ex-
cluding intercept via 0 + formulation. A disadvantage of dpar_formula ap-
proach is that it is not possible to include random effects for the sigma. Note
that sigma_formula and dpar_formula can not be specified together. When
either sigma_formula or dpar_formula is used, the default estimation of the
RSD by brms::brm() is automatically turned off. Note that user can specify an
external function such as poly but with only a single argument (predictor) i.e.

18 bsitar

poly(age). The addition arguments must be specified externally. For example,
if user wants to set degree as degree, then a copy of poly can be created which
is then modified and used in the sigma_formula as
mypoly = poly; formals(mypoly)[['degree']] <- 3; mypoly(age).

sigma_formula_gr

Formula for the random effect parameter, sigma (default NULL). See a_formula_gr
for details. Like sigma_formula, external function such as poly can used.
Please above for details sigma_formula.

sigma_formula_gr_str

Formula for the random effect parameter, sigma when fitting a hierarchical
model with three or more levels of hierarchy. See a_formula_gr_str for de-
tails. Like sigma_formula, external function such as poly can used. Please
above for details sigma_formula.

sigma_formula_manual

Formula for the random effect parameter, sigma via a character string string that
explicitly uses the brms::nlf() and brms::lf() functions (default NULL). An
example is
nlf(sigma ~ z) + lf(z ~ 1 + age + (1 + age |55| gr(id, by = NULL))). Another
use case of sigma_formula_manual is to model location scale model for the
SITAR model where same SITAR formula can be used to model the scale (sigma).
An example is
nlf(sigma ~ sigmaSITARFun(logage, sigmaa, sigmab, sigmac, sigmas1,sigmas2,
sigmas3, sigmas4), loop = FALSE) + lf(sigmaa ~ 1 + (1 |110| gr(id, by =
NULL))+(1 |330| gr(study, by = NULL))) + lf(sigmab ~ 1 + (1 |110| gr(id,
by = NULL))+(1 |330| gr(study, by = NULL))) + lf(sigmac ~ 1 + (1 |110| gr(id,
by = NULL))+(1 |330| gr(study, by = NULL))) + lf(sigmas1 + sigmas2 + sigmas3
+ sigmas4 ~ 1)
where sigmaSITARFun (and all other needed sub functions) are defined by the
sigmax, sigmadf, sigmaknots, sigmafixed, sigmarandom, sigmaxoffset,
sigmaxfun and sigmabound arguments. It is important to match the sigma_formula_manual
code as sigmaSITARFun created by the above arguments.
Note that for sigma_formula_manual, the priors need to set up manually via
the add_self_priors argument. To see which all priors need to be added, the
user can run the code by setting get_priors = TRUE. Also, no initial values are
defined and therefore initials for these parameters can be either 0 or random.

sigmax Predictor for the sigma. See x for details. Ignored if sigma_formula_manual =
NULL.

sigmadf Degree of freedom for the spline function for sigma. See df for details. Ignored
if sigma_formula_manual = NULL.

sigmaknots Degree of freedom for the spline function for sigma. See knots for details.
Ignored if sigma_formula_manual = NULL.

sigmafixed Fixed effect formula for the sigma structure. See fixed for details. Ignored if
sigma_formula_manual = NULL.

sigmarandom Random effect formula for the sigma structure. See random for details. Ignored
if sigma_formula_manual = NULL. Currently not used even when setting up the
sigma_formula_manual.

bsitar 19

sigmaxoffset Offset for the x for sigma structure. See xoffset for details. Ignored if sigma_formula_manual
= NULL.

sigmabstart Start of b parameter for sigma structure. See bstart for details. Ignored if
sigma_formula_manual = NULL. Currently not used even when setting up the
sigma_formula_manual.

sigmacstart Start of c parameter for sigma structure. See cstart for details. Ignored if
sigma_formula_manual = NULL. Currently not used even when setting up the
sigma_formula_manual.

sigmaxfun Transformation of x for the sigma structure. See xfun for details. Ignored if
sigma_formula_manual = NULL.

sigmabound Bounds for the x for sigma structure. See bound for details. Ignored if sigma_formula_manual
= NULL.

dpar_formula Formula for the distributional fixed effect parameter, sigma (default NULL). See
sigma_formula for details.

autocor_formula

Formula to set up the autocorrelation structure of residuals (default NULL). Al-
lowed autocorrelation structures are:

• autoregressive moving average (arma) of order p and q specified as autocor_formula
= ~arms(p=1, q=1).

• autoregressive (ar) of order p specified as autocor_formula = ~ar(p=1).
• moving average (ma) of order q specified as autocor_formula = ~ma(q=1).
• unstructured (unstr) over time (and individuals), The unstr structure is

specified as autocor_formula = ~unstr(time, id)).

See brms::brm() for further details on modeling autocorrelation structure of
residuals

family Family distribution (default gaussian) and the link function (default identity).
See brms::brm() for details on available distributions and link functions, and
how to specify them. For univariate_by and multivariate models, the family
can be same (e.g., family = gaussian()) for sub models or different for each
sub model such as family = list(gaussian(), student()) which sets gaussian
distribution for the first sub model and student_t distribution for the second
sub model. Please note that argument family is ignored when use specifies
custom_family i.e., custom_family is not NULL.

custom_family Specify custom families (i.e. response distribution). Default NULL. Please see
brms::custom_family() for details. It is important no note that user defined
Stan functions must be expose by setting expose_functions = TRUE.

custom_stanvars

Prepare and pass user-defined variables that need to be added to the Stan’s pro-
gram blocks (default NULL). This is primarily useful when defining custom_family.
Please see brms::custom_family() for details on specifying stanvars. Note
that custom_stanvars are passed directly without conducting any sanity checks.

group_arg Specify arguments for group-level random effects. The group_arg should be a
named list that may include groupvar, dist, cor and by as described below:

• The groupvar specifies the subject identifier. In case groupvar = NULL
(default), the groupvar is automatically assigned based on the id argument.

20 bsitar

• The dist specifies the distribution from which the random effects are drawn
(default gaussian). As per the brms::brm() documentation, the gaussian
distribution is the only available distribution (as of now).

• The by argument can be used to estimate separate variance covariance struc-
ture (i.e., standard deviation and correlation parameters) for random effect
parameters (default NULL). If specified, variable used to set up the by ar-
gument must be a factor variable. For example, by = 'sex' implies that
separate variance covariance structure are estimated for males and females.

• The cor is used to set up the covariance (i.e., correlation) structure for
random effect parameters. The default covariance is unstructured (i.e, cor
= un) for all three model settings, i.e., univariate, univariate_by and
multivariate. The alternative correlation structure available for univariate
and univariate_by models is diagonal. While the cor = un models the
full unstructured variance covariance structure, the cor = diagonal esti-
mates only the variance (i.e, standard deviation) parameters and the covari-
ance (i.e., correlation) parameters are set to zero. For multivariate model,
options include un, diagonal and un_s. The un sets up the unstructured
correlation implying that the group level random effects across response
variables are drawn for a joint multivariate normal distribution with shared
correlation parameters. The cor = diagonal specifies that only the vari-
ance parameter are estimates for each sub model whereas the correlation
parameters set to zero. Option cor = un_s allows for estimating unstruc-
tured variance covariance parameters separately for each response variable.

Note that user need not to define all or any of these options (i.e., groupvar, dist,
cor, or by) because if unspecified, they are are automatically set to their default
values. Also note that only groupvar from the group_arg argument is passed
on to the univariate_by and multivariate models because these model have their
own additional options specified via the univariate_by and multivariate ar-
guments. Lastly, the group_arg is completely ignored when user specify ran-
dom effects via the vertical bar || approach (see a_formula_gr for details) or
when fitting a hierarchical model with three or more levels of hierarchy (see
a_formula_gr_str for details).

sigma_group_arg

Specify arguments for modelling distributional level random effects, sigma. The
approach used in setting up the sigma_group_arg is exactly same as described
above for the group level random effects (see group_arg for details).

univariate_by Set up the univariate-by-subgroup model fitting (default NULL) via a named list
as described below:

• The by (an optional character string) is used to specify the variable (must
be a factor variable) to define the sub models (default NA).

• The cor (an optional character string) specifies the correlation structure.
The options available are un and diagonal. The un = un (default) mod-
els the full unstructured variance covariance structure, whereas the cor =
diagonal estimates only the variance (i.e, standard deviation) parameters
and the covariance (i.e., correlation) parameters are set to zero.

• The terms (an optional character string) specifies the method used in setting
up the sub models. Options are 'subset' (default) and 'weights'. See

bsitar 21

brms::`addition-terms` for details.

multivariate Set up the multivariate model fitting (default NULL) arguments as a named list:

• The mvar (logical, default FALSE) indicates whether to fit a multivariate
model.

• The cor (an optional character string) sets up the correlation structure. The
options available are un, diagonal and un_s. The un sets up the unstruc-
tured correlation implying that the group level random effects across re-
sponse variables are drawn for a joint multivariate normal distribution with
shared correlation parameters. The cor = diagonal specifies that only the
variance parameter are estimates for each sub model whereas the correlation
parameters set to zero. Option cor = un_s allows for estimating unstruc-
tured variance covariance parameters separately for each response variable.

• The rescor (logical, default TRUE) indicates whether to estimate the resid-
ual correlation between response variables.

a_prior_beta Specify priors for the fixed effect parameter, a. (default normal(ymean, ysd,
autoscale = TRUE)). The key points in prior specification that are applicable
for all parameters are highlighted below. For full details on prior specification,
please see brms::prior().

• Allowed distributions are normal, student_t, cauchy, lognormal, uniform,
exponential, gamma and inv_gamma (inverse gamma).

• For each distribution, upper and lower bounds can be set via options lb and
ub (default NA for both lb and ub).

• For location-scale based distributions (such as normal, student_t, cauchy,
and lognormal), an option autoscale (default FALSE) can be used to mul-
tiply the scale parameter by a numeric value. Both brms and rstanarm
packages allow similar auto scaling under the hood. While rstanarm ear-
lier used to set autoscale as TRUE which internally multiplied scale param-
eter by a value 2.5 (recently authors changed this behavior to FALSE), the
brms package sets scaling factor as 1.0 or 2.5 depending on the standard
deviation of the response variable (See brms::prior()). The bsitar pack-
age offers full flexibility in choosing the scaling factor as any real number
instead of 1.0 or 2.5 (e.g., autoscale = 5.0). When autoscale = TRUE,
2.5 is the default scaling factor.

• For location-scale based distributions such as normal, options fxl (function
location) and fxs (function scale) are available to apply any function
such as log and sqrt, or a function defined in the R environment to trans-
form the location and scale parameters. For example, prior normal(2, 5,
fxl = 'log', fxs = 'sqrt') will be translated internally as normal(log(2),
sqrt(5)) implying that the actually prior assigned will be normal(0.693,
2.23). The default for both fxl and fxs is NULL.

• Like fxl and fxs functions, another function fxls (function location
scale) is available to transform location and scale parameters for the location-
scale based distributions such as normal. Unlike fxl and fxs functions
which transform location and scale parameters individually, the fxls func-
tion is used for those transformation for which both location and scale pa-
rameters are needed in the transformation of these parameters. For example,
the transformation of location and scale parameters for the normal prior on

22 bsitar

log scale is as follows:
log_location = log(location / sqrt(scale^2 / location^2 + 1)),
log_scale = sqrt(log(scale^2 / location^2 + 1)),
where location and scale are the original parameters supplied by the user
and log_location and log_scale are the equivalent parameters on the log
scale. The fxls can be set as a character string or a list comprised of two
functions where first function of the list will be used to transform the loca-
tion parameter and the second function will be for the scale transformation.
If a character string is used such as fxls = 'log', then the above transfor-
mation for the log parametrization will be applied automatically. Note that
if using a list, then the list must be crated within the R environment and
then passed this to the fxls as:
location_fun <- function(location, scale) { log(location / sqrt(scale^2
/ location^2 + 1)) }
scale_fun <- function(location, scale) { sqrt(log(scale^2 / location^2
+ 1)) }
fxls_fun <- list(location_fun = location_fun, scale_fun = scale_fun)
fxls = 'fxls_fun'
As an example, normal(2, 5, fxls = 'fxls_fun'. The default for fxls is
NULL.

• For strictly positive distributions such as exponential, gamma and inv_gamma,
the lower bound (lb) is automatically set to zero i.e., lb = 0.

• For uniform distribution, an option addrange is available to symmetrically
widen the prior range. For example, prior uniform(a, b, addrange = 5)
implies that the lower and upper limits will be evaluated as uniform(a-5,
b+5).

• For exponential distribution, the rate parameter is evaluated as inverse.
In other words, prior set as exponential(10.0) is translated to 0.1 i.e.,
exponential(1.0/10.0).

• User need not to specify each option explicitly because the missing options
are set to their default values automatically. For example, the prior specified
as a_prior_beta = normal(location = 5, scale = 1, lb = NA, ub = NA,
addrange = NA, autoscale = FALSE, fxl = NULL, fxs = NULL)) is same as
a_prior_beta = normal(5, 1)).

• For univariate_by multivariate models, priors can be same for sub
models (e.g., a_prior_beta = normal(5, 1)), or different for each sub
such as a_prior_beta = list(normal(5,1), normal(10, 5)).

The location parameter for the location-scale based distributions can be speci-
fied as mean (by specifying 'ymean') or the median (by using 'ymedian') of
the response variable. Similarly, the scale parameter can be set as the standard
deviation (SD) or the median absolute deviation (MAD) of the response variable
via 'ysd' and 'ymad' options. Another option available is to use the coefficients
'lm' from the simple linear model applied to the data (e.g., lm(y ~ age, data
= data). This is true even when model has covariates i.e., lm(y ~ age + cov,
data = data). A few examples of specifying priors using these options are:
a_prior_beta = normal(ymean, ysd),
a_prior_beta = normal(ymean, ysd),
a_prior_beta = normal(ymedian, ymad),

bsitar 23

a_prior_beta = normal(lm, ysd),
Note that options 'ymean', 'ymedian', 'ysd', 'ymad', 'ymad' and 'lm' are
available only for the fixed effect parameter, a and not for parameters b, c or d.

b_prior_beta Specify priors for the fixed effect parameter, b. (default normal(0, 3.5, autoscale
= FALSE)). See a_prior_beta for details.

c_prior_beta Specify priors for the fixed effect parameter, c. (default normal(0, 1.5, autoscale
= FALSE)). See a_prior_beta for details.

d_prior_beta Specify priors for the fixed effect parameter, d. (default normal(0, 1.0, autoscale
= FALSE)). See a_prior_beta for details.

s_prior_beta Specify priors for the fixed effect parameter, s (i.e., spline coefficients). (de-
fault normal(0, 'lm', autoscale = TRUE)). The general approach is same as
described earlier for the fixed effect parameters (see a_prior_beta for details).
A few key points are highlighted below:

• When specifying location-scale based priors using ’lm’ such as s_prior_beta
= normal(lm, 'lm') , it sets spline coefficients obtained from the simple
linear model fit as location parameter whereas scale parameter is based on
the standard deviation of the spline design matrix. However, typically, the
location parameter is set at ’0’ (default), and the autoscale option is set as
TRUE.

• For location-scale based priors, an option sethp (logical, default FALSE) is
available to set up the hierarchical priors. To set sethp as TRUE, the prior is
specified as s_prior_beta = normal(0, 'lm', autoscale = TRUE, sethp
= TRUE)). When sethp = TRUE, instead of setting prior as s ~ normal(0,
'lm') the hierarchical priors are set as s ~ normal(0, 'hp') where 'hp' is
defined as hp ~ normal(0, 'lm'). Note that the scale parameter for the hp
~ normal(0, 'lm') is automatically taken from the s ~ normal(0, 'hp').
Setting sethp = TRUE implies that the scale for spline coefficients is esti-
mated from the data itself. The distribution of hierarchical priors is au-
tomatically matched with the prior set for the s parameter, or else can be
set by the same sethp option. For example, s_prior_beta = normal(0,
'lm', sethp = cauchy) will be translated to s ~ normal(0, 'lm'), hp ~
cauchy(0, 'lm').

• For uniform priors, the optionaddrange can be used to symmetrically ex-
pand the prior range.

It is observed that location scale based prior distributions (e.g, normal, student_t,
and cauchy) perform well for the spline coefficients.

a_cov_prior_beta

Specify priors for the covariate(s) included in the fixed effect parameter, a (de-
fault normal(0, 5.0, autoscale = FALSE)). The approach is same as described
earlier for the a_prior_beta except that options 'ymean', 'ymedian', 'ysd',
and 'ymad' are not allowed. The Option 'lm' for the location parameter sets
covariate(s) coefficient obtained from the simple linear model fit to the data.
Note that option 'lm' is allowed only for the a_cov_prior_beta and not for
the covariate(s) included in the other fixed or random effect parameters. Lastly,
separate priors can be specified for sub models when fitting univariate_by and
a_prior_beta models (see a_prior_beta).

24 bsitar

b_cov_prior_beta

Specify priors for the covariate(s) included in the fixed effect parameter, b (de-
fault normal(0, 1.0, autoscale = FALSE)). See a_cov_prior_beta for de-
tails.

c_cov_prior_beta

Specify priors for the covariate(s) included in the fixed effect parameter, c (de-
fault normal(0, 0.1, autoscale = FALSE)). See a_cov_prior_beta for de-
tails.

d_cov_prior_beta

Specify priors for the covariate(s) included in the fixed effect parameter, d (de-
fault normal(0, 1.0, autoscale = FALSE)). See a_cov_prior_beta for de-
tails.

s_cov_prior_beta

Specify priors for the covariate(s) included in the fixed effect parameter, s (de-
fault normal(0, 10.0, autoscale = FALSE)). However, as described earlier,
(see s_formual), the SITAR model does not allows for inclusion of covari-
ate(s) in the spline design matrix. If and when covariate(s) are specified (see
s_formual), the approach of setting priors for the covariate(s) included in the
parameter, s via s_cov_prior_beta is same as described earlier for the fixed
effect parameter a (see a_cov_prior_beta). For the location-scale based pri-
ors, the option 'lm' sets the location parameter same as the spline coefficients
obtained from fitting a simple linear to the data.

a_prior_sd Specify priors for the random effect parameter, a. (default normal(0, 'ysd',
autoscale = FALSE)). Note that prior is on the standard deviation (which is
the square root of the variance) and not on the variance itself. The approach of
setting the prior is same as described earlier for the fixed effect parameter, a (See
a_prior_beta) with the exception that location parameter is always zero. The
lower bound 0 is automatically set by the brms::brm(). For univariate_by
and multivariate models, priors can be same for sub models or different for
each sub model (See a_prior_beta).

b_prior_sd Specify priors for the random effect parameter, b (default normal(0, 2.0, autoscale
= FALSE)). See a_prior_sd for details.

c_prior_sd Specify priors for the random effect parameter, c (default normal(0, 1.25,
autoscale = FALSE)). See a_prior_sd for details.

d_prior_sd Specify priors for the random effect parameter, d (default normal(0, 1.0, autoscale
= FALSE)). See a_prior_sd for details.

a_cov_prior_sd Specify priors for the covariate(s) included in the random effect parameter, a
(default normal(0, 5.0, autoscale = FALSE)). The approach is same as de-
scribed earlier for the a_cov_prior_beta except that no pre-defined option
(e.g., 'lm') is allowed.

b_cov_prior_sd Specify priors for the covariate(s) included in the random effect parameter, b
(default normal(0, 1.0, autoscale = FALSE)). See a_cov_prior_sd for de-
tails.

c_cov_prior_sd Specify priors for the covariate(s) included in the random effect parameter, c
(default normal(0, 0.1, autoscale = FALSE)). See a_cov_prior_sd for de-
tails.

bsitar 25

d_cov_prior_sd Specify priors for the covariate(s) included in the random effect parameter, d
(default normal(0, 1.0, autoscale = FALSE)). See a_cov_prior_sd for de-
tails.

a_prior_sd_str Specify priors for the random effect parameter, a when fitting a hierarchical
model with three or more levels of hierarchy (default NULL). The approach is
same as described earlier (see the a_prior_sd).

b_prior_sd_str Specify priors for the random effect parameter, b when fitting a hierarchical
model with three or more levels of hierarchy (default NULL). The approach is
same as described earlier (see the a_prior_sd_str).

c_prior_sd_str Specify priors for the random effect parameter, c when fitting a hierarchical
model with three or more levels of hierarchy (default NULL). The approach is
same as described earlier (see the a_prior_sd_str).

d_prior_sd_str Specify priors for the random effect parameter, d when fitting a hierarchical
model with three or more levels of hierarchy (default NULL). The approach is
same as described earlier (see the a_prior_sd_str).

a_cov_prior_sd_str

Specify priors for the covariate(s) included in the random effect parameter, a
when fitting a hierarchical model with three or more levels of hierarchy (default
NULL). The approach is same as described earlier (see the a_cov_prior_sd).

b_cov_prior_sd_str

Specify priors for the covariate(s) included in the random effect parameter, b
when fitting a hierarchical model with three or more levels of hierarchy (default
NULL). The approach is same as described earlier (see the a_cov_prior_sd_str).

c_cov_prior_sd_str

Specify priors for the covariate(s) included in the random effect parameter, c
when fitting a hierarchical model with three or more levels of hierarchy (default
NULL). The approach is same as described earlier (see the a_cov_prior_sd_str).

d_cov_prior_sd_str

Specify priors for the covariate(s) included in the random effect parameter, d
when fitting a hierarchical model with three or more levels of hierarchy (default
NULL). The approach is same as described earlier (see the a_cov_prior_sd_str).

sigma_prior_beta

Specify priors for the fixed effect distributional parameter, sigma (default normal(0,
1.0, autoscale = FALSE)). The approach is same as described earlier for the
fixed effect parameter, a (See a_prior_beta for details).

sigma_cov_prior_beta

Specify priors for the covariate(s) included in the fixed effect distributional pa-
rameter, sigma (default normal(0, 0.5, autoscale = FALSE)). The approach
is same as described earlier for the covariate(s) included the fixed effect param-
eter, a (see a_cov_prior_beta for details).

sigma_prior_sd Specify priors for the random effect distributional parameter, sigma (default
normal(0, 0.25, autoscale = FALSE)). The approach is same as described
earlier the random effect parameter a (see a_prior_sd for details).

sigma_cov_prior_sd

Specify priors for the covariate(s) included in the random effect distributional
parameter, sigma (default normal(0, 0.15, autoscale = FALSE)). The approach

26 bsitar

is same as described earlier for the covariate(s) included in the random effect pa-
rameter a (see a_cov_prior_sd for details).

sigma_prior_sd_str

Specify priors for the the random effect distributional parameter, sigma when
fitting a hierarchical model with three or more levels of hierarchy (default NULL).
The approach is same as described earlier for the random effect parameter, a
(See a_prior_sd_str for details).

sigma_cov_prior_sd_str

Specify priors for the covariate(s) included in the random effect distributional
parameter, sigma when fitting a hierarchical model with three or more levels of
hierarchy (default NULL). The approach is same as described earlier for the co-
variate(s) included in the random effect parameter, a (See a_cov_prior_sd_str
for details).

rsd_prior_sigma

Specify priors for the residual standard deviation parameter sigma (default normal(0,
'ysd', autoscale = TRUE)). Note that this argument is evaluated only when
both dpar_formula and sigma_formula are NULL. For location scale based dis-
tributions, user can use specify standard deviation (ysd) or the median absolute
deviation (ymad) as scale parameter.

dpar_prior_sigma

Specify priors for the fixed effect distributional parameter sigma (default normal(0,
'ysd', autoscale = TRUE)). The argument is evaluated only when sigma_formula
is NULL.

dpar_cov_prior_sigma

Specify priors for the covariate(s) included in the fixed effect distributional pa-
rameter sigma (default normal(0, 1.0, autoscale = FALSE)). The argument
is evaluated only when sigma_formula is NULL.

autocor_prior_acor

Specify priors for the autocorrelation parameters when fitting a model with the
'arma', 'ar' or the 'ma' autocorrelation structures (see autocor_formula for
details). The only allowed distribution is uniform distribution bounded between
-1 and +1 (default uniform(-1, 1, autoscale = FALSE)). For the unstructured
residual correlation structure, a separate argument autocor_prior_unstr_acor
is used to specify the priors (see below).

autocor_prior_unstr_acor

Specify priors for the autocorrelation parameters when fitting a model with
the unstructured ('un') autocorrelation structure (see autocor_formula for de-
tails). The only allowed distribution is the lkj (default lkj(1)). See gr_prior_cor
below for details on setting up the lkj prior.

gr_prior_cor Specify priors for the correlation parameter(s) of group-level random effects
(default lkj(1)). The only allowed distribution is lkj that is specified via a
single parameter eta (see brms::prior() for details).

gr_prior_cor_str

Specify priors for the correlation parameter(s) of group-level random effects
when fitting a hierarchical model with three or more levels of hierarchy (default
lkj(1)). The approach is same as described above (See gr_prior_cor).

bsitar 27

sigma_prior_cor

Specify priors for the correlation parameter(s) of distributional random effects
sigma (default lkj(1)). The only allowed distribution is lkj (see gr_prior_cor
for details). Note that currently brms::brm() does not allow for setting differ-
ent lkj priors for the group level and distributional random effects that share
the same group identifier (id). Therefore, either create a copy of group identi-
fier and use that but then this will not allow correlation parameter across group
random effects and sigma.

sigma_prior_cor_str

Specify priors for the correlation parameter(s) of distributional random effects
sigma when fitting a hierarchical model with three or more levels of hierarchy
(default lkj(1)). The approach is same as described above (See sigma_prior_cor).

mvr_prior_rescor

Specify priors for the residual correlation parameter when fitting a multivariate
model (default lkj(1)). The only allowed distribution is lkj (see gr_prior_cor
for details).

init Initial values for the sampler. If init = '0', all parameters are initialized to
zero. For init = 'random', Stan will randomly generate initial values for each
parameter within a range specified by the init_r (see below), or between -2
and 2 in unconstrained space when init_r = NULL. Another available option is
init = 'prior' which sets initial values based on the prior specified for each
parameter. Lastly, when init = NULL (default), initial value for each parameter
is specified by the corresponding init arguments defined see below.

init_r A positive real value to set range for the random generation of initial values
(default NULL). This argument is evaluated only when init = 'random'.

a_init_beta Initial values for the fixed effect parameter, a (default ’random’). Options avail-
able are '0', 'random' and 'prior'. In addition, user can specify 'ymean'
and 'ymedian' to set initial as the mean or the median of the response variable.
Also, option 'lm' can be used to set coefficients obtained from the simple linear
model fitted to the data as initial values for the fixed effect parameter, a. Note
that this is similar to the location parameter for prior on the fixed effect parame-
ter a (see a_prior_beta for details). These options ('ymean', 'ymedian', and
'lm') are available only for the fixed effect parameter a and not for other param-
eters described below. Lastly, For univariate_by and multivariate models,
the initials can be same (e.g., a_init_beta = 0) for sub models or different for
each sub model such as
list(a_init_beta = '0', a_init_beta = 'lm').

b_init_beta Initial values for the fixed effect parameter, b (default ’random’). See a_init_beta
for details.

c_init_beta Initial values for the fixed effect parameter, c (default ’random’). See a_init_beta
for details.

d_init_beta Initial values for the fixed effect parameter, d (default ’random’). See a_init_beta
for details.

s_init_beta Initial values for the fixed effect parameter, s (default ’random’). Options avail-
able are '0', 'random', 'prior', and 'lm'.

28 bsitar

a_cov_init_beta

Initial values for the covariate(s) included in the fixed effect parameter, a (default
’random’). Options available are '0', 'random', 'prior' and 'lm'. The option
'lm' is available only for the a_cov_init_beta and not for the covariate(s)
included in other fixed effect parameters b, c, or d.

b_cov_init_beta

Initial values for covariate(s) included in the fixed effect parameter, b (default
’random’). See a_cov_init_beta for details.

c_cov_init_beta

Initial values for covariate(s) included in the fixed effect parameter, c (default
’random’). See a_cov_init_beta for details.

d_cov_init_beta

Initial values for covariate(s) included in the fixed effect parameter, d (default
’random’). See a_cov_init_beta for details.

s_cov_init_beta

Initial values for covariate(s) included in the fixed effect parameter, s (default
’lm’). See a_cov_init_beta for details. The option 'lm' will set the spline
coefficients obtained from the simple linear model fitted to the data. Note that
s_cov_init_beta is only a placeholder and is not valuated because covariate(s)
are not allowed for the s parameter. See s_formula for details.

a_init_sd Initial value for the standard deviation of group level random effect parameter, a
(default ’random’). Options available are 'random', 'random' and 'prior'. In
addition, 'ysd', 'ymad', 'lme_sd_a', and 'lm_sd_a' can be used to specify
initial values as described below:

• The 'ysd' sets standard deviation (sd) of the response variable as an initial
value.

• The 'ymad' sets median absolute deviation (mad) of the response variable
as an initial value.

• The 'lme_sd_a' sets initial value based on the standard deviation of ran-
dom Intercept obtained from the linear mixed model (nlme::lme()) fitted
to the data. Note that in case nlme::lme() fails to converge, the option
'lm_sd_a' (see below) is set automatically.

• The 'lm_sd_a' sets square root of the residual variance obtained from the
simple linear model applied to the data as an initial value.

Note that these option described above ('ysd', 'ymad', 'lme_sd_a', and 'lm_sd_a')
are available only for the random effect parameter a and not for other group level
random effects. Lastly, when fitting univariate_by and multivariate mod-
els, user can set same initials for sub models, or different for each sub model.

b_init_sd Initial value for the standard deviation of group level random effect parameter,
b (default ’random’). See a_init_sd for details.

c_init_sd Initial values for the group level random effect parameter, c (default ’random’).
See a_init_sd for details.

d_init_sd Initial value for the standard deviation of group level random effect parameter,
d (default ’random’). See a_init_sd for details.

a_cov_init_sd Initial values for the covariate(s) included in the random effect parameter, a
(default ’random’). Options available are 'random', 'random' and 'prior'.

bsitar 29

b_cov_init_sd Initial values for the covariate(s) included in the random effect parameter, b
(default ’random’). See a_cov_init_sd for details.

c_cov_init_sd Initial values for the covariate(s) included in the random effect parameter, c
(default ’random’). See a_cov_init_sd for details.

d_cov_init_sd Initial values for the covariate(s) included in the random effect parameter, d
(default ’random’). See a_cov_init_sd for details.

sigma_init_beta

Initial values for the fixed effect distributional parameter, sigma (default ’ran-
dom’). Options available are 'random', 'random' and 'prior'.

sigma_cov_init_beta

Initial values for the covariate(s) included in the fixed effect distributional pa-
rameter, sigma (default ’random’)

sigma_init_sd Initial value for the standard deviation of distributional random effect parameter,
sigma (default ’random’). The approach is same as described earlier for the
group level random effect parameters such as a (See a_init_sd for details).

sigma_cov_init_sd

Initial values for the covariate(s) included in the distributional random effect
parameter, sigma (default ’random’). (See a_cov_init_sd for details).

gr_init_cor Initial values for the correlation parameters of group-level random effects pa-
rameters (default ’random’). Allowed options are 'random', 'random' and
'prior'.

sigma_init_cor Initial values for the correlation parameters of distributional random effects pa-
rameter sigma (default ’random’). Allowed options are 'random', 'random'
and 'prior'.

rsd_init_sigma Initial values for the residual standard deviation parameter, sigma (default ’ran-
dom’). Options available are '0', 'random' and 'prior'. In addition, op-
tions 'lme_rsd' and 'lm_rsd' can be used as follows. The lme_rsd sets initial
value based on the standard deviation of residuals obtained from the linear mixed
model (nlme::lme()) fitted to the data. The initial value set by the 'lm_rsd'
is the square root of the residual variance from the simple linear model ap-
plied to the data. Note that in case nlme::lme() fails to converge, then option
'lm_sd_a' is set automatically. The argument rsd_init_sigma is evaluated
when dpar_formula and sigma_formula are set to NULL.

dpar_init_sigma

Initial values for the distributional parameter sigma (default ’random’). The ap-
proach and options available are same as described above for the rsd_init_sigma.
This argument is evaluated only when dpar_formula is not NULL.

dpar_cov_init_sigma

Initial values for the covariate(s) included in the distributional parameter, sigma
(default ’random’). Allowed options are '0', 'random', and 'prior'.

autocor_init_acor

Initial values for autocorrelation parameter (see autocor_formula for details).
Allowed options are '0', 'random', and 'prior' (default ’random’).

autocor_init_unstr_acor

Initial values for unstructured residual autocorrelation parameters (default ’ran-
dom’). Allowed options are '0', 'random', and 'prior'. Note that the ap-
proach to set initials for autocor_init_unstr_acor is identical to the gr_init_cor.

30 bsitar

mvr_init_rescor

Initial values for the residual correlation parameter when fitting a multivariate
model (default ’random’). Allowed options are '0', 'random', and 'prior'.

r_init_z Initial values for the standardized group level random effect parameters (default
’random’). These parameters are part of the Non-Centered Parameterization
(NCP) approach used in the brms::brm().

vcov_init_0 A logical (default FALSE) to set initials for variance (i.e, standard deviation)
and covariance (i.e., correlation) parameters as zero. This allows for setting
custom initials for the fixed effects parameters but zero initials for the variance
covariance parameters.

jitter_init_beta

A value as proportion (between 0 and 1) to perturb the initial values for fixed ef-
fect parameters. The default is NULL indicating that same initials are used across
all chains. A sensible option can be jitter_init_beta = 0.1 as it mildly per-
turb the initials. Note that jitter is not absolute but proportion of the specified
initial value. For example, if initial value is 100, then jitter_init_beta = 0.1
implies that the perturbed initial value will be within 90 and 110. On the other
hand, if initial values is 10, then the perturbed initial value will be within 9 and
11.

jitter_init_sd A value as proportion (between 0 and 1) to perturb the initials for standard de-
viation of random effect parameters. The default is NULL indicating that same
initials are used across all chains. An option of setting jitter_init_beta =
0.01 looked good during early testing.

jitter_init_cor

A value as proportion (between 0 and 1) to perturb the initials for correlation
parameters of random effects. The default is NULL indicating that same initials
are used across all chains. An option of setting jitter_init_beta = 0.001
looked good during early testing.

prior_data An optional argument (a named list, default NULL) that can be used to pass in-
formation to the prior arguments for each parameter (e.g., a_prior_beta). The
prior_data is particularly helpful in passing a long vector or a matrix as pri-
ors. These vectors and matrices can be created in the R framework and then
passed using the prior_data. For example, to pass a vector of location and
scale parameters when setting priors for covariate coefficients (with 10 dummy
variables) included in the fixed effects parameter a, the following steps can be
used to set covariate priors that each has scale parameter (sd) as 5 but mean
values are drawn from a normal distribution with mean = 0 and sd = 1:

• create the named objects prior_a_cov_location and prior_a_cov_scale
in the R environment as follows:
prior_a_cov_location <- rnorm(n = 10, mean = 0, sd = 1)
prior_a_cov_scale <- rep(5, 10)

• specify the above created objects prior_a_cov_location and prior_a_cov_scale
in the prior_data as follows:
prior_data = list(prior_a_cov_location = prior_a_cov_location,
prior_a_cov_scale = prior_a_cov_scale).

bsitar 31

• now use the prior_data objects to set up the priors as:
a_cov_prior_beta = normal(prior_a_cov_location, prior_a_cov_scale).

init_data An optional argument (a named list, default NULL) that can be used to pass in-
formation to the initial arguments. The approach is the exact same as described
above for the prior_data.

init_custom Specify a custom initials object (a named list). The named list is directly passed
to the init argument without checking for the dimensions and name matching.
Note that in case initials are set for some parameter by using parameter specific
argument (e.g., a_init_beta = 0), then init_custom is only passed to those
parameters for which initials are missing. If user want to override this behav-
iors i.e., to pass all init_custom ignoring parameter specific initials, then init
should be set as init = 'custom'.

verbose An optional argument (logical, default FALSE) to indicate whether to print infor-
mation collected during setting up the model formula priors, and initials. As an
example, the user might be interested in knowing the response variables created
for the sub model when fitting a univariate-by-subgroup model. This informa-
tion can then be used in setting the desired order of options passed to each such
model such as df, prior, initials etc.

expose_function

An optional argument (logical, default FALSE) to indicate whether to expose Stan
function used in model fitting.

get_stancode An optional argument (logical, default FALSE) to get the stancode (see brms::stancode()
for details).

get_standata An optional argument (logical, default FALSE) to get the standata (see brms::standata()
for details).

get_formula An optional argument (logical, default FALSE) to get the formula. (see brms::brmsformula()
for details).

get_stanvars An optional argument (logical, default FALSE) to get the stanvars (see brms::stanvar()
for details).

get_priors An optional argument (logical, default FALSE) to get the priors. (see brms::get_prior()
for details).

get_priors_eval

An optional argument (logical, default FALSE) to get the priors specified by the
user.

get_init_eval An optional argument (logical, default FALSE) to get the initial values specified
by the user.

validate_priors

An optional argument (logical, default FALSE) to validate the specified priors.
(see brms::validate_prior() for details).

set_self_priors

An optional argument (default NULL) to manually specify the priors. Note that
set_self_priors is passed directly to the brms::brm() without performing
any checks.

add_self_priors

An optional argument (default NULL) to append part of prior object. This is for
internal use only.

32 bsitar

set_replace_priors

An optional argument (default NULL) to replace part of prior object. This is for
internal use only.

set_same_priors_hierarchy

An optional argument (default NULL) to replace part of the prior object. This is
for internal use only.

outliers An optional argument (default NULL) to remove outliers. The argument should
be a named list which is passed directly to the sitar::velout() and sitar::zapvelout()
functions. This is for internal use only.

unused An optional formula that defines variables that are unused in the model but
should still be stored in the model’s data frame. This can be useful when vari-
ables are required during the post-processing.

chains Number of Markov chains (default 4).

iter Number of total iterations per chain, including warmup (default 2000)

warmup A positive integer specifying the number of warmup (aka burnin) iterations. This
also specifies the number of iterations used for stepsize adaptation, so warmup
draws should not be used for inference. The number of warmup should not be
larger than iter and the default is iter/2.

thin A positive integer. Set thin > 1 to save memory and computation time if iter is
large. The thin > 1 is often used in cases with high autocorrelation of MCMC
draws An indication of high autocorrelation is poor mixing of chain (i.e., high
rhat values) despite the fact that model recovers the parameters well. An easy
diagnostic to check for autocorrelation of MCMC draws is to use the mcmc_acf
function from the bayesplot.

cores Number of cores to be used when executing the chains in parallel. See brms::brm()
for details. Note that unlike brms::brm(), which sets default cores argument
as cores=getOption("mc.cores", 1), the default cores in bsitar package is
cores=getOption("mc.cores", 'optimize') which optimizes the utilization
of system resources. The maximum number of cores that can be deployed is cal-
culated as the maximum number of available cores minus 1. When the number
of available cores is greater than the number of chains (see chains), then num-
ber of cores is set equal to the number of chains. Another option is to set cores
as getOption("mc.cores", 'maximise') which sets the number of cores as
the maximum number of cores available from the system regardless of the num-
ber of chains specified. Note that the user can also set cores argument similar
to the brms::brm() i.e., getOption("mc.cores", 1). All these three options
can be set globally as options(mc.cores = x) where x can be 'optimize',
'maximise' or 1. Lastly, the cores can set by directly by specifying an integer
e.g., cores = 4.

backend A character string naming the package to be used when executing the the Stan
model. Options are "rstan" (the default) or "cmdstanr". Can be set globally
for the current R session via the "brms.backend". See brms::brm() for details.

threads Number of threads to be used in within-chain parallelization. Note that unlike
the brms::brm() which sets the threads argument as getOption("brms.threads",
NULL) implying that no within-chain parallelization is used by default, the bsitar
package, by default, sets threads as getOption("brms.threads", 'optimize')

bsitar 33

to utilize the available resources from the modern computing systems. The
number of threads per chain is set as the maximum number of cores available
minus 1. Another option is to set threads as getOption("brms.threads",
'maximise') which set the number threads per chains same as the maximum
number of cores available. User can also set the threads similar to the brms i.e.,
getOption("brms.threads", NULL). All these three options can be set glob-
ally as options(brms.threads = x) where x can be 'optimize', 'maximise'
or NULL. Alternatively, the number of threads can be set directly as threads =
threading(x) where X is an integer. Other arguments that can be passed to the
threads are grainsize and the static. See brms::brm() for further details
on within-chain parallelization.

opencl The platform and device IDs of the OpenCL device to use for fitting using GPU
support. If you don’t know the IDs of your OpenCL device, c(0,0) is most
likely what you need. For more details, see brms::opencl(). Can be set glob-
ally for the current R session via the "brms.opencl" option.

normalize Indicates whether normalization constants should be included in the Stan code
(default TRUE). Setting it to FALSE requires Stan version >= 2.25. If FALSE, sam-
pling efficiency may be increased but some post processing functions such as
brms::bridge_sampler() will not be available. This option can be controlled
globally via the brms.normalize option.

algorithm Character string naming the estimation approach to use. Options are "sampling"
for MCMC (the default), "meanfield" for variational inference with indepen-
dent normal distributions, "fullrank" for variational inference with a multi-
variate normal distribution, or "fixed_param" for sampling from fixed parame-
ter values. Can be set globally for the current R session via the "brms.algorithm"
option (see options).

control A named list to control the sampler’s behavior. The default are same as
brms::brm() with the exception that the max_treedepth has been increased
form 10 to 12 to allow better exploration of typically challenging posterior ge-
ometry posed by the nonlinear model. However, another control parameter, the
adpat_delta which is also often need to be increased for nonlinear model, has
be set to default setting as in brms::brm() i.e, 0.8. This is to avoid unnecessar-
ily increasing the sampling time. See brms::brm() for full details on control
parameters and their default values.

empty Logical. If TRUE, the Stan model is not created and compiled and the corre-
sponding 'fit' slot of the brmsfit object will be empty. This is useful if you
have estimated a brms-created Stan model outside of brms and want to feed it
back into the package.

rename For internal use only.
pathfinder_args

A named list of arguments passed to the 'pathfinder' algorithm. This is
used to set 'pathfinder' based initial values for the 'MCMC'. Note that 'pathfinder_args'
currently works only for backend = "cmdstanr". Therefore, even when user
specified backend = "rstan", it will be automatically changed to backend =
"cmdstanr" when 'pathfinder_args' is not NULL.

pathfinder_init

A logical default FALSE to indicate whether to use initials from the 'pathfinder'

34 bsitar

when fitting the final model i.e, 'MCMC' sampling. Note that 'pathfinder_args'
currently works only for backend = "cmdstanr". Therefore, even when user
specified backend = "rstan", it will be automatically changed to backend =
"cmdstanr" when 'pathfinder_args' is not NULL. The arguments passed to
the 'pathfinder' algorithm are specified via the 'pathfinder_args'. If 'pathfinder_args'
= NULL, then the default arguments set via the 'cmdstanr' are used.

sample_prior Indicates whether to draw sample from priors in addition to the posterior draws.
Options are "no" (the default), "yes", and "only". Among others, these draws
can be used to calculate Bayes factors for point hypotheses via brms::hypothesis().
Please note that improper priors are not sampled, including the default improper
priors used by brm. See brms::set_prior() on how to set (proper) priors.
Please also note that prior draws for the overall intercept are not obtained by
default for technical reasons. See brms::brmsformula() how to obtain prior
draws for the intercept. If sample_prior is set to "only", draws are drawn
solely from the priors ignoring the likelihood, which allows among others to
generate draws from the prior predictive distribution. In this case, all parame-
ters must have proper priors.

save_pars An object generated by brms::save_pars() controlling which parameters should
be saved in the model. The argument has no impact on the model fitting itself.

drop_unused_levels

Should unused factors levels in the data be dropped? Defaults to TRUE.
stan_model_args

A list of further arguments passed to rstan::stan_model for backend = "rstan"
or backend = "cmdstanr", which allows to change how models are compiled.

refresh An integer to set the printing of every nth iteration. Default NULL indicates that
refresh will be set automatically by the brms::brm(). Setting refresh is useful
especially when thin is greater than 1. In that case, the refresh is recalculated
as (refresh * thin) / thin.

silent Verbosity level between 0 and 2. If 1 (the default), most of the informational
messages of compiler and sampler are suppressed. If 2, even more messages
are suppressed. The actual sampling progress is still printed. Set refresh = 0 to
turn this off as well. If using backend = "rstan" you can also set open_progress
= FALSE to prevent opening additional progress bars.

seed The seed for random number generation to make results reproducible. If NA (the
default), Stan will set the seed randomly.

save_model A character string or NULL (default). If not NULL, then the model’s Stan code is
saved via in a text file named after the string supplied in save_model.

fit An instance of S3 class brmsfit derived from a previous fit; defaults to NA. If
fit is of class brmsfit, the compiled model associated with the fitted result is
re-used and all arguments modifying the model code or data are ignored. It is
not recommended to use this argument directly, but to call the update method,
instead.

file Either NULL or a character string. In the latter case, the fitted model object is
saved via saveRDS in a file named after the string supplied in file. The .rds
extension is added automatically. If the file already exists, brm will load and
return the saved model object instead of refitting the model. Unless you specify

bsitar 35

the file_refit argument as well, the existing files won’t be overwritten, you
have to manually remove the file in order to refit and save the model under an
existing file name. The file name is stored in the brmsfit object for later usage.

file_compress Logical or a character string, specifying one of the compression algorithms sup-
ported by saveRDS. If the file argument is provided, this compression will be
used when saving the fitted model object.

file_refit Modifies when the fit stored via the file argument is re-used. Can be set glob-
ally for the current R session via the "brms.file_refit" option (see options).
For "never" (default) the fit is always loaded if it exists and fitting is skipped.
For "always" the model is always refitted. If set to "on_change", brms will
refit the model if model, data or algorithm as passed to Stan differ from what is
stored in the file. This also covers changes in priors, sample_prior, stanvars,
covariance structure, etc. If you believe there was a false positive, you can use
brms::brmsfit_needs_refit() to see why refit is deemed necessary. Refit
will not be triggered for changes in additional parameters of the fit (e.g., initial
values, number of iterations, control arguments, ...). A known limitation is that
a refit will be triggered if within-chain parallelization is switched on/off.

future Logical; If TRUE, the future package is used for parallel execution of the chains
and argument cores will be ignored. Can be set globally for the current R
session via the "future" option. The execution type is controlled via plan (see
the examples section below).

parameterization

A character string to specify Non-centered parameterization, NCP ('ncp') or
the Centered parameterization, CP ('cp') to draw group level random effect.
The NCP is generally recommended when likelihood is not strong (e.g., a few
number of observations per individual). The NCP is the default (and only) ap-
proach implemented in the brms::brm(). The CP parameterization, on the other
hand, is often considered more efficient than NCP when a relatively large num-
ber of observations are available across individual. The ’relatively large num-
ber’ is not defined in the literature and we follow a general approach wherein
CP parameterization is used when each individual provides at least 10 repeated
measurements and NCP otherwise. Note this automatic behavior is set only
when the argument parameterization = NULL. To set CP parameterization, use
parameterization = 'cp'. The default is parameterization = 'ncp'. Note
that since brms::brm() does not offer CP parameterization, the brms::brm()
generated stancode is first edited internally and then the model is fit using the
rstan::rstan() or cmdstanr, depending on the backend choice. Therefore,
we caution that CP parameterization should be considered experimental and it
may fail if structure of the brms::brm() generated stancode changes in future.

... Further arguments passed to brms::brm(). Can also be used to pass some
strictly internal use arguments such as match_sitar_a_form, match_sitar_d_form,
sigmamatch_sitar_a_form, displayit, setcolh, setcolb etc.

Details

The SITAR is a shape-invariant nonlinear mixed effect growth curve model that fits a population
average (i.e., mean average) curve to the data, and aligns each individual’s growth trajectory to the

36 bsitar

underlying population average curve via a set of (typically) three random effects: the size, timing
and intensity. Additionally, a slope parameter can be included as a random effect to estimate the
variability in adult growth rate (See sitar::sitar() for details). The concept of shape invariant
model (SIM) was first described by Lindstrom (1995) and later used by Beath (2007) to model
infant growth data (birth to 2 years). The current version of the SITAR model is developed by Cole
et al. (2010) and has been used extensively for modelling growth data (see Nembidzane et al. 2020
and Sandhu 2020).

The frequentist version of the SITAR model can be fit by using an already available R package,
the sitar (Cole 2022). The framework of Bayesian implementation of the SITAR model in bsitar
package is same as the sitar package with the exception that unlike the sitar package which uses B
spline basis for the natural cubic spline design matrix (by calling the splines::ns()), the bsitar
package uses the truncated power basis approach (see Harrell and others (2001), and Harrell Jr.
(2022) for details) to construct the spline design matrix. Note that bsitar package builds the spline
design matrix on the fly which is then included in the functions block of the Stan program and
hence compiled (via the c++) during the model fit.

Like sitar package (Cole et al. 2010), the bsitar package fits SITAR model with (usually) up to
three random effects: the size (parameter defined as a), the timing (parameter defined as b) and the
intensity (parameter defined as c). In addition, there is a slope parameter (defined as d) that models
the variability in the adult slope of the growth curve (See sitar::sitar() for details). Please
note that author of the sitar package (Cole et al. 2010) enforces the inclusion of parameter d as a
random effects only and therefore excludes it from the fixed fixed structure of the model. However,
the bsitar package allows inclusion of parameter d in fixed and/or in the random effects structures
of the SITAR model. For the three parameter version of the SITAR model (default), the fixed ef-
fects structure (i.e., population average trajectory) is specified as fixed = 'a+b+c', and the random
effects structure that captures the deviation of individual trajectories from the population average
curve is specified as random = 'a+b+c'. Note that user need not to include all the three parameters
in the fixed or the random effect structure. For example, a fixed effect version of the SITAR model
can be fit by setting randoms as an empty string i.e., random = ''. Furthermore, the fixed effect
structure may include only a sub set of the parameters e.g., size and timing parameters (fixed =
'a+b') or the size and the intensity parameters (fixed = 'a+c'). The four parameters version of
the SITAR model is fit by including parameter d in the fixed and/or the random arguments. Similar
to the three parameter SITAR model, user can fit model with a sub set of the fixed and/or the random
effects.

The sitar package internally depends on the brms package (see Bürkner 2022; Bürkner 2021). The
brms can fit a wide range of hierarchical linear and nonlinear regression models including multi-
variate models. The brms itself depends on the Stan software program full Bayesian inference (see
Stan Development Team 2023; Gelman et al. 2015). Like brms, the bsitar package allows a wide
range of prior specifications that encourage the users to specify priors that actually reflect their
prior knowledge about the human growth processes, (such as timing and intensity of the growth
spurt). For prior specification, we follow the carefully crafted approaches used in the brms and
rstanarm packages. While brms packages use a combination of normal and student_t distri-
bution for the regression coefficients and the standard deviation of group level random effects and
the distributional parameter (sigma), the rstanarm uses normal distribution for regression coeffi-
cients and the group level random effects but sets exponential distribution for the distributional
parameter (sigma). We follow use defaultnormal distribution for all parameters i.e., regression
coefficients and the standard deviation of group level random effects and the distributional param-
eter. Like brms and rstanarm packages, the bsitar package allows 'autoscaling' of the scale
parameter for location-scale based distributions (such as normal and student_t). While rstan-

bsitar 37

arm earlier used to set autoscale as 2.5 (recently authors changed this behavior to FALSE), the
brms package sets it as 1.0 or 2.5 depending on the standard deviation of the response variable
(See brms::prior()). The bsitar package, on the other hand, offers full flexibility in choosing the
scale factor as any real number (e.g., autoscale = 5.0). When autoscale = TRUE, the 2.5 is the
default scaling factor. We strongly recommend to go through the well documented details on prior
specifications used in brms and rstanarm packages.

Like brms package, the bsitar package offers a range of tools to evaluate the model fit that include
posterior predictive check (see brms::pp_check()) and the leave one out (loo) cross validation
(see brms::loo()). Furthermore, while the excellent post-processing support offered by the brms
package is directly available to the users, the bsitar package includes many customized functions
that allow for estimation and visualization of population average and individual specific distance
(increase in size) and velocity (change in rate of growth), as well as computation of population
average and individual specific growth parameters such as age at peak growth velocity (APGV) and
the peak growth velocity (PGV).

Finally, the bsitar package allows three different types of model specifications: 'univariate',
'univariate_by' and 'multivariate'. A 'univariate' fitting involves a single model applied
to an outcome whereas both 'univariate_by' and 'multivariate' specifications comprise two
or more sub models. The 'univariate_by' fits two or more sub models to an outcome variable
defined by a factor variable (e.g, sex). The data are typically stacked and the factor variable is used to
set-up the sub models via the 'subset' option available in the brms::brm(). The 'multivariate'
model allows simultaneous modelling of two or more outcomes with joint a distribution of the
random effects. For both 'univariate_by' and 'multivariate' models, the bsitar package
allows full flexibility in specifying separate arguments such as predictor variables (x), degree of
freedom (df) for design matrix as well as the priors and the initial values. Furthermore, to enhance
the ease of specifying different options and to make it user-friendly, there is no need to enclose
the character option(s) in single or double quotes. For example to specify the 'univariate_by'
for sex, the univariate_by = sex is same as univariate_by = 'sex' or univariate_by = "sex".
The same applies for all character string options.

Value

An object of class brmsfit, bsiatr, that contains the posterior draws and other useful information
about the model.

Note

The package is under continuous development and new models and post-processing features will
be added soon.

Author(s)

Satpal Sandhu <satpal.sandhu@bristol.ac.uk>

References

Bürkner P (2021). “Bayesian Item Response Modeling in R with brms and Stan.” Journal of Sta-
tistical Software, 100(5), 1–54. doi:10.18637/jss.v100.i05.

Bürkner P (2022). brms: Bayesian Regression Models using Stan. R package version 2.18.0,

https://doi.org/10.18637/jss.v100.i05

38 bsitar

https://CRAN.R-project.org/package=brms.

Beath KJ (2007). “Infant growth modelling using a shape invariant model with random effects.”
Statistics in Medicine, 26(12), 2547–2564. doi:10.1002/sim.2718, Type: Journal article.

Cole T (2022). sitar: Super Imposition by Translation and Rotation Growth Curve Analysis. R
package version 1.3.0, https://CRAN.R-project.org/package=sitar.

Cole TJ, Donaldson MDC, Ben-Shlomo Y (2010). “SITAR—a useful instrument for growth curve
analysis.” International Journal of Epidemiology, 39(6), 1558–1566. ISSN 0300-5771, doi:10.1093/
ije/dyq115, tex.eprint: https://academic.oup.com/ije/article-pdf/39/6/1558/18480886/dyq115.pdf.

Gelman A, Lee D, Guo J (2015). “Stan: A Probabilistic Programming Language for Bayesian
Inference and Optimization.” Journal of Educational and Behavioral Statistics, 40(5), 530-543.
doi:10.3102/1076998615606113.

Harrell FE, others (2001). Regression modeling strategies: with applications to linear models,
logistic regression, and survival analysis, volume 608. Springer.

Harrell Jr. FE (2022). Hmisc: Harrell Miscellaneous. R package version 4.7-2, https://hbiostat.
org/R/Hmisc/.

Lindstrom MJ (1995). “Self-modelling with random shift and scale parameters and a free-knot
spline shape function.” Statistics in Medicine, 14(18), 2009-2021. doi:10.1002/sim.4780141807,
https://pubmed.ncbi.nlm.nih.gov/8677401/.

Nembidzane C, Lesaoana M, Monyeki KD, Boateng A, Makgae PJ (2020). “Using the SITAR
Method to Estimate Age at Peak Height Velocity of Children in Rural South Africa: Ellisras
Longitudinal Study.” Children, 7(3), 17. ISSN 2227-9067, doi:10.3390/children7030017, https:
//www.mdpi.com/2227-9067/7/3/17.

Sandhu SS (2020). Analysis of longitudinal jaw growth data to study sex differences in timing
and intensity of the adolescent growth spurt for normal growth and skeletal discrepancies. Thesis,
University of Bristol.

Stan Development Team (2023). Stan Reference Manual version 2.31. https://mc-stan.org/
docs/reference-manual/.

See Also

brms::brm() brms::brmsformula() brms::prior()

Examples

Examples below fits SITAR model to the 'berkeley_exdata' which is a subset
of the Berkley height data. The same subset of the Berkley height data
has been used as an example data in the vignette for the 'sitar' package.
#
The Berkley height data comprise of repeated growth measurements made on

https://CRAN.R-project.org/package=brms
https://doi.org/10.1002/sim.2718
https://CRAN.R-project.org/package=sitar
https://doi.org/10.1093/ije/dyq115
https://doi.org/10.1093/ije/dyq115
https://doi.org/10.3102/1076998615606113
https://hbiostat.org/R/Hmisc/
https://hbiostat.org/R/Hmisc/
https://doi.org/10.1002/sim.4780141807
https://pubmed.ncbi.nlm.nih.gov/8677401/
https://doi.org/10.3390/children7030017
https://www.mdpi.com/2227-9067/7/3/17
https://www.mdpi.com/2227-9067/7/3/17
https://mc-stan.org/docs/reference-manual/
https://mc-stan.org/docs/reference-manual/

bsitar 39

66 boys and 70 girls (birth to 21 years).
#
The subset of the Berkley height data analysed here include growth
measurements for 70 girls (8 to 18 years).
#
See 'sitar' package documentation for details on Berkley height data
(help file ?sitar::berkeley). The details on subset data for 70 girls is
provided in the vignette('Fitting_models_with_SITAR', package = 'sitar').

Fit frequentist SITAR model with df = 5 by using the sitar package

Get 'berkeley_exdata' data that has been already saved
berkeley_exdata <- getNsObject(berkeley_exdata)

model_ml <- sitar::sitar(x = age, y = height, id = id,
df = 5,
data = berkeley_exdata,
xoffset = 'mean',
fixed = 'a+b+c',
random = 'a+b+c',
a.formula = ~1,
b.formula = ~1,
c.formula = ~1
)

Fit Bayesian SITAR model

To avoid mode estimation which takes time, the Bayesian SITAR model fit to
the 'berkeley_exdata' has been saved as an example fit ('berkeley_exfit').
The model is fit using 2 chain (1000 iterations per) with thin set as 6 to
save time and memory. This is because of the package size restrictions
imposed by the CRAN. Due to the small number of draws, the example model
fit shown here is only included as an illustration and therefore users
are advised to refit model with default setting suggested by the Stan Team
(4 chain with 2000 iterations per chain along with thin = 1).

Check and confirm whether model fit object 'berkeley_exfit' exists
berkeley_exfit <- bsitar:::berkeley_exfit
berkeley_exfit <- getNsObject(berkeley_exfit)

print(berkeley_exfit)
if(exists('berkeley_exfit')) {

model <- berkeley_exfit
} else {
Fit model with default priors
See documentation for prior on each parameter
model <- bsitar(x = age, y = height, id = id,

df = 3,
data = berkeley_exdata,
xoffset = 'mean',
fixed = 'a+b+c',
random = 'a+b+c',

40 bsitar

a_formula = ~1,
b_formula = ~1,
c_formula = ~1,
threads = brms::threading(NULL),
chains = 2, cores = 2, iter = 6000, thin = 15)

Note that we can test for the sensitivity to the priors by re fitting the
above model with flat (i.e., uniform) priors on the regression coefficients
for parameters a, b and c.
model <- bsitar(x = age, y = height, id = id,

df = 3,
data = berkeley_exdata,
xoffset = 'mean',
fixed = 'a+b+c',
random = 'a+b+c',
a_formula = ~1,
b_formula = ~1,
c_formula = ~1,
a_prior_beta = flat,
b_prior_beta = flat,
c_prior_beta = flat,
threads = brms::threading(NULL),
chains = 2, cores = 2, iter = 6000, thin = 15)

}

Generate model summary
summary(model)

Compare model summary with the maximum likelihood SITAR model
print(model_ml)

Check model fit via posterior predictive checks. The plot_ppc is a based
on the pp_check function from the brms package.

plot_ppc(model, ndraws = 100)

Plot distance and velocity curves using plot_conditional_effects() function.
This function works exactly same as as conditional_effects() from the brms
package with the exception that plot_conditional_effects allows for
plotting velocity curve also.

Distance
plot_conditional_effects(model, deriv = 0)

Velocity
plot_conditional_effects(model, deriv = 1)

Plot distance and velocity curve along with the parameter estimates using
the plot_curves() function. This function works exactly the same way as
plot.sitar from the sitar package

plot_curves(model, apv = TRUE)

expose_model_functions.bgmfit 41

Compare plot with the maximum likelihood SITAR model

plot(model_ml)

expose_model_functions.bgmfit

Expose user defined Stan function for post-processing

Description

The expose_model_functions() is a wrapper around the rstan::expose_stan_functions() to
expose user defined Stan function(s). These exposed functions are needed during the post-processing
of the posterior draws.

Usage

S3 method for class 'bgmfit'
expose_model_functions(
model,
scode = NULL,
expose = TRUE,
select_model = NULL,
returnobj = TRUE,
vectorize = FALSE,
verbose = FALSE,
envir = NULL,
...

)

expose_model_functions(model, ...)

Arguments

model An object of class bgmfit.

scode A character string (Stan code) containing the user-defined Stan function(s). If
NULL (default), the scode is retrieved from the model.

expose A logical (default TRUE) to indicate whether to expose functions and add them
to the model as an attribute.

select_model A character string (default NULL) to indicate the model name. This is for internal
use only.

returnobj A logical (default TRUE) to indicate whether to return the model object. When
expose = TRUE, then it is advisable to set returnobj = TRUE too.

42 expose_model_functions.bgmfit

vectorize A logical (default FALSE) to indicate whether the exposed functions should be
vectorized via base::Vectorize(). Note that currently vectorize should be
set to FALSE because setting it TRUE may not work as expected.

verbose An optional argument (logical, default FALSE) to indicate whether to print infor-
mation collected during setting up the object(s).

envir Environment used for function evaluation. The default is NULL which will set
parent.frame() as default environment. Note that since most of post process-
ing functions are based on brms, the functions needed for evaluation should
be in the .GlobalEnv. Therefore, it is strongly recommended to set envir =
globalenv() (or envir = .GlobalEnv). This is particularly true for the deriva-
tives such as velocity curve.

... Additional arguments passed to the rstan::expose_stan_functions() func-
tion.

Value

An object of class bgmfit if returnobj=TRUE, otherwise invisible NULL.

Author(s)

Satpal Sandhu <satpal.sandhu@bristol.ac.uk>

See Also

rstan::expose_stan_functions()

Examples

Fit Bayesian SITAR model

To avoid mode estimation which takes time, the Bayesian SITAR model fit to
the 'berkeley_exdata' has been saved as an example fit ('berkeley_exfit').
See 'bsitar' function for details on 'berkeley_exdata' and 'berkeley_exfit'.

Check and confirm whether model fit object 'berkeley_exfit' exists
berkeley_exfit <- getNsObject(berkeley_exfit)

model <- berkeley_exfit

To save time, argument expose is set as FALSE which runs a dummy test
and avoid model compilation which often takes time

expose_model_functions(model, expose = FALSE)

fitted_draws.bgmfit 43

fitted_draws.bgmfit Fitted (expected) values from the posterior draws

Description

The fitted_draws() is a wrapper around the brms::fitted.brmsfit() function to obtain fitted
values (and their summary) from the posterior draws. See brms::fitted.brmsfit() for details.

Usage

S3 method for class 'bgmfit'
fitted_draws(
model,
newdata = NULL,
resp = NULL,
dpar = NULL,
ndraws = NULL,
draw_ids = NULL,
re_formula = NA,
allow_new_levels = FALSE,
sample_new_levels = "uncertainty",
incl_autocor = TRUE,
numeric_cov_at = NULL,
levels_id = NULL,
avg_reffects = NULL,
aux_variables = NULL,
ipts = 10,
deriv = 0,
deriv_model = TRUE,
summary = TRUE,
robust = FALSE,
transform = NULL,
probs = c(0.025, 0.975),
xrange = NULL,
xrange_search = NULL,
parms_eval = FALSE,
parms_method = "getPeak",
idata_method = NULL,
verbose = FALSE,
fullframe = NULL,
dummy_to_factor = NULL,
expose_function = FALSE,
usesavedfuns = NULL,
clearenvfuns = NULL,
funlist = NULL,
envir = NULL,
...

44 fitted_draws.bgmfit

)

fitted_draws(model, ...)

Arguments

model An object of class bgmfit.

newdata An optional data frame to be used in estimation. If NULL (default), the newdata
is retrieved from the model.

resp A character string (default NULL) to specify response variable when process-
ing posterior draws for the univariate_by and multivariate models. See
bsitar() for details on univariate_by and multivariate models

dpar Optional name of a predicted distributional parameter. If specified, expected
predictions of this parameters are returned.

ndraws A positive integer indicating the number of posterior draws to be used in esti-
mation. If NULL (default), all draws are used.

draw_ids An integer indicating the specific posterior draw(s) to be used in estimation (de-
fault NULL).

re_formula Option to indicate whether or not to include the individual/group-level effects
in the estimation. When NA (default), the individual-level effects are excluded
and therefore population average growth parameters are computed. When NULL,
individual-level effects are included in the computation and hence the growth
parameters estimates returned are individual-specific. In both situations, (i.e„
NA or NULL), continuous and factor covariate(s) are appropriately included in
the estimation. The continuous covariates by default are set to their means (see
numeric_cov_at for details) whereas factor covariates are left unaltered thereby
allowing estimation of covariate specific population average and individual-
specific growth parameter.

allow_new_levels

A flag indicating if new levels of group-level effects are allowed (defaults to
FALSE). Only relevant if newdata is provided.

sample_new_levels

Indicates how to sample new levels for grouping factors specified in re_formula.
This argument is only relevant if newdata is provided and allow_new_levels is
set to TRUE. If "uncertainty" (default), each posterior sample for a new level
is drawn from the posterior draws of a randomly chosen existing level. Each
posterior sample for a new level may be drawn from a different existing level
such that the resulting set of new posterior draws represents the variation across
existing levels. If "gaussian", sample new levels from the (multivariate) nor-
mal distribution implied by the group-level standard deviations and correlations.
This options may be useful for conducting Bayesian power analysis or predict-
ing new levels in situations where relatively few levels where observed in the
old_data. If "old_levels", directly sample new levels from the existing levels,
where a new level is assigned all of the posterior draws of the same (randomly
chosen) existing level.

incl_autocor A flag indicating if correlation structures originally specified via autocor should
be included in the predictions. Defaults to TRUE.

fitted_draws.bgmfit 45

numeric_cov_at An optional (named list) argument to specify the value of continuous covari-
ate(s). The default NULL option set the continuous covariate(s) at their mean. Al-
ternatively, a named list can be supplied to manually set these values. For exam-
ple, numeric_cov_at = list(xx = 2) will set the continuous covariate varibale
’xx’ at 2. The argument numeric_cov_at is ignored when no continuous co-
variate is included in the model.

levels_id An optional argument to specify the ids for hierarchical model (default NULL). It
is used only when model is applied to the data with 3 or more levels of hierarchy.
For a two level model, the levels_id is automatically inferred from the model
fit. Even for 3 or higher level model, the levels_id is inferred from the model
fit but under the assumption that hierarchy is specified from lowest to upper most
level i.e, id followed by study where id is nested within the study Note that it
is not guaranteed that the levels_id is sorted correctly, and therefore it is better
to set it manually when fitting a model with three or more levels of hierarchy.

avg_reffects An optional argument (default NULL) to calculate (marginal/average) curves and
growth parameters such as APGV and PGV. If specified, it must be a named list
indicating the over (typically level 1 predictor, such as age), feby (fixed effects,
typically a factor variable), and reby (typically NULL indicating that parameters
are integrated over the random effects) such as avg_reffects = list(feby =
'study', reby = NULL, over = 'age').

aux_variables An optional argument to specify the variable(s) that can be passed to the ipts
argument (see below). This is useful when fitting location scale models and
measurement error models. An indication to use aux_variables is when post
processing functions throw an error such as variable 'x' not found either
'data' or 'data2'

ipts An integer to set the length of the predictor variable to get a smooth velocity
curve. The NULL will return original values whereas an integer such as ipts
= 10 (default) will interpolate the predictor. It is important to note that these
interpolations do not alter the range of predictor when calculating population
average and/or the individual specific growth curves.

deriv An integer to indicate whether to estimate distance curve or its derivative (i.e.,
velocity curve). The deriv = 0 (default) is for the distance curve whereas deriv
= 1 for the velocity curve.

deriv_model A logical to specify whether to estimate velocity curve from the derivative func-
tion, or the differentiation of the distance curve. The argument deriv_model is
set to TRUE for those functions which need velocity curve such as growthparameters()
and plot_curves(), and NULL for functions which explicitly use the distance
curve (i.e., fitted values) such as loo_validation() and plot_ppc().

summary A logical indicating whether only the estimate should be computed (TRUE), or
estimate along with SE and CI should be returned (FALSE, default). Setting
summary as FALSE will increase the computation time. Note that summary =
FALSE is must to get the correct estimates when re_formula = NULL.

robust A logical to specify the summarize options. If FALSE (the default) the mean
is used as the measure of central tendency and the standard deviation as the
measure of variability. If TRUE, the median and the median absolute deviation
(MAD) are applied instead. Ignored if summary is FALSE.

46 fitted_draws.bgmfit

transform A function applied to individual draws from the posterior distribution, before
computing summaries. The argument transform is based on the marginaleffects::predictions().
This should not be confused with the transform from the brms::posterior_predict()
which is now deprecated.

probs The percentiles to be computed by the quantile function. Only used if summary
is TRUE.

xrange An integer to set the predictor range (i.e., age) when executing the interpola-
tion via ipts. The default NULL sets the individual specific predictor range
whereas code xrange = 1 sets identical range for individuals within the same
higher grouping variable (e.g., study). Code xrange = 2 sets the identical range
across the entire sample. Lastly, a paired numeric values can be supplied e.g.,
xrange = c(6, 20) to set the range within those values.

xrange_search A vector of length two, or a character string 'range' to set the range of predictor
variable (x) within which growth parameters are searched. This is useful when
there is more than one peak and user wants to summarize peak within a given
range of the x variable. Default xrange_search = NULL.

parms_eval A logical to specify whether or not to get growth parameters on the fly. This is
for internal use only and mainly needed for compatibility across internal func-
tions.

parms_method A character to specify the method used to when evaluating parms_eval. The
default is getPeak which uses the sitar::getPeak() function from the sitar
package. The alternative option is findpeaks that uses this findpeaks from the
pracma package. This is for internal use only and mainly needed for compati-
bility across internal functions.

idata_method A character string to indicate the interpolation method. The number of of inter-
polation points is set up the ipts argument. Options available for idata_method
are method 1 (specified as 'm1') and method 2 (specified as 'm2'). The method
1 ('m1') is adapted from the the iapvbs package and is documented here https:
//rdrr.io/github/Zhiqiangcao/iapvbs/src/R/exdata.R whereas method
2 ('m2') is based on the JMbayes package as documented here https://github.
com/drizopoulos/JMbayes/blob/master/R/dynPred_lme.R. The 'm1' method
works by internally constructing the data frame based on the model configura-
tion whereas the method 'm2' uses the exact data frame used in model fit and can
be accessed via fit$data. If idata_method = NULL, default, then method
'm2' is automatically set. Note that method 'm1' might fail in some cases when
model involves covariates particularly when model is fit as univariate_by.
Therefore, it is advised to switch to method 'm2' in case 'm1' results in error.

verbose An optional argument (logical, default FALSE) to indicate whether to print infor-
mation collected during setting up the object(s).

fullframe A logical to indicate whether to return fullframe object in which newdata is
bind to the summary estimates. Note that fullframe can not be combined with
summary = FALSE. Furthermore, fullframe can only be used when idata_method
= 'm2'. A particular use case is when fitting univariate_by model. The
fullframe is mainly for internal use only.

dummy_to_factor

A named list (default NULL) that is used to convert dummy variables into a
factor variable. The named elements are factor.dummy, factor.name, and

https://rdrr.io/github/Zhiqiangcao/iapvbs/src/R/exdata.R
https://rdrr.io/github/Zhiqiangcao/iapvbs/src/R/exdata.R
https://github.com/drizopoulos/JMbayes/blob/master/R/dynPred_lme.R
https://github.com/drizopoulos/JMbayes/blob/master/R/dynPred_lme.R

fitted_draws.bgmfit 47

factor.level. The factor.dummy is a vector of character strings that need to
be converted to a factor variable whereas the factor.name is a single character
string that is used to name the newly created factor variable. The factor.level
is used to name the levels of newly created factor. When factor.name is NULL,
then the factor name is internally set as 'factor.var'. If factor.level is
NULL, then names of factor levels are take from the factor.dummy i.e., the factor
levels are assigned same name as factor.dummy. Note that when factor.level
is not NULL, its length must be same as the length of the factor.dummy.

expose_function

An optional logical argument to indicate whether to expose Stan functions (de-
fault FALSE). Note that if user has already exposed Stan functions during model
fit by setting expose_function = TRUE in the bsitar(), then those exposed
functions are saved and can be used during post processing of the posterior
draws and therefore expose_function is by default set as FALSE in all post
processing functions except optimize_model(). For optimize_model(), the
default setting is expose_function = NULL. The reason is that each optimized
model has different Stan function and therefore it need to be re exposed and
saved. The expose_function = NULL implies that the setting for expose_function
is taken from the original model fit. Note that expose_function must be set to
TRUE when adding fit criteria and/or bayes_R2 during model optimization.

usesavedfuns A logical (default NULL) to indicate whether to use the already exposed and saved
Stan functions. Depending on whether the user have exposed Stan functions
within the bsitar() call via expose_functions argument in the bsitar(), the
usesavedfuns is automatically set to TRUE (if expose_functions = TRUE) or
FALSE (if expose_functions = FALSE). Therefore, manual setting of usesavedfuns
as TRUE/FALSE is rarely needed. This is for internal purposes only and mainly
used during the testing of the functions and therefore should not be used by users
as it might lead to unreliable estimates.

clearenvfuns A logical to indicate whether to clear the exposed function from the environment
(TRUE) or not (FALSE). If NULL (default), then clearenvfuns is set as TRUE when
usesavedfuns is TRUE, and FALSE if usesavedfuns is FALSE.

funlist A list (default NULL) to set function names. This is rarely used because re-
quired functions are automatically retrieved internally. A use case of funlist
when sigma_formula, sigma_formula_gr, or sigma_formula_gr_str uses a
function such as poly(age). See bsitar::bsitar() for details. The funlist
provides list of function names which have been defined externally and are avail-
able in the base::globalenv(). Note that for functions that need distance and
velocity curves such as plot_curves(..., opt = 'dv'), the funlist must in-
clude two functions where first will be used for the distance and second for the
velocity.

envir Environment used for function evaluation. The default is NULL which will set
parent.frame() as default environment. Note that since most of post process-
ing functions are based on brms, the functions needed for evaluation should
be in the .GlobalEnv. Therefore, it is strongly recommended to set envir =
globalenv() (or envir = .GlobalEnv). This is particularly true for the deriva-
tives such as velocity curve.

48 fitted_draws.bgmfit

... Additional arguments passed to the brms::fitted.brmsfit() function. Please
see brms::fitted.brmsfit() for details on various options available.

Details

The fitted_draws() computes the fitted values from the posterior draws. The brms::fitted.brmsfit()
function from the brms package can used to get the fitted (distance) values when outcome (e.g.,
height) is untransformed. However, when the outcome is log or square root transformed, the
brms::fitted.brmsfit() function will return the fitted curve on the log or square root scale
whereas the fitted_draws() function returns the fitted values on the original scale. Furthermore,
the fitted_draws() also compute the first derivative of (velocity) that too on the original scale af-
ter making required back-transformation. Except for these differences, both these functions (i.e.,
brms::fitted.brmsfit() and fitted_draws()) work in the same manner. In other words, user
can specify all the options available in the brms::fitted.brmsfit().

Value

An array of predicted mean response values. See brms::fitted.brmsfit for details.

Author(s)

Satpal Sandhu <satpal.sandhu@bristol.ac.uk>

See Also

brms::fitted.brmsfit()

Examples

Fit Bayesian SITAR model

To avoid mode estimation which takes time, the Bayesian SITAR model fit to
the 'berkeley_exdata' has been saved as an example fit ('berkeley_exfit').
See 'bsitar' function for details on 'berkeley_exdata' and 'berkeley_exfit'.

Check and confirm whether model fit object 'berkeley_exfit' exists
berkeley_exfit <- getNsObject(berkeley_exfit)

model <- berkeley_exfit

Population average distance curve
fitted_draws(model, deriv = 0, re_formula = NA)

Individual-specific distance curves
fitted_draws(model, deriv = 0, re_formula = NULL)

Population average velocity curve
fitted_draws(model, deriv = 1, re_formula = NA)

Individual-specific velocity curves

getNsObject 49

fitted_draws(model, deriv = 1, re_formula = NULL)

getNsObject Check and get namespace object if exists

Description

Check and get namespace object if exists

Usage

getNsObject(object, namespace = NULL, envir = NULL)

Arguments

object An object to be retrieved. Note that object must be a symbol and not a character
string.

namespace A character string specifying the namespace to be checked.

envir An environment to be used (default NULL).

Value

An object of same class as input object.

Author(s)

Satpal Sandhu <satpal.sandhu@bristol.ac.uk>

Examples

Check whether model fit object 'berkeley_exfit' exists
berkeley_exfit <- getNsObject(berkeley_exfit)

50 growthparameters.bgmfit

growthparameters.bgmfit

Estimate growth parameters from the model fit

Description

The growthparameters() computes population average and and individual-specific growth param-
eters (such as age at peak growth velocity) and the uncertainty (standard error, SE and the credible
interval, CI). Note that a better alternative is to use growthparameters_comparison() function
that not only allows estimation of adjusted parameters but also makes it possible to compare these
parameters across groups.

Usage

S3 method for class 'bgmfit'
growthparameters(
model,
newdata = NULL,
resp = NULL,
dpar = NULL,
ndraws = NULL,
draw_ids = NULL,
summary = FALSE,
robust = FALSE,
transform = NULL,
re_formula = NA,
peak = TRUE,
takeoff = FALSE,
trough = FALSE,
acgv = FALSE,
acgv_velocity = 0.1,
estimation_method = "fitted",
allow_new_levels = FALSE,
sample_new_levels = "uncertainty",
incl_autocor = TRUE,
numeric_cov_at = NULL,
levels_id = NULL,
avg_reffects = NULL,
aux_variables = NULL,
ipts = 10,
deriv_model = TRUE,
conf = 0.95,
xrange = NULL,
xrange_search = NULL,
digits = 2,
seed = 123,
future = FALSE,

growthparameters.bgmfit 51

future_session = "multisession",
cores = NULL,
parms_eval = FALSE,
idata_method = NULL,
parms_method = "getPeak",
verbose = FALSE,
fullframe = NULL,
dummy_to_factor = NULL,
expose_function = FALSE,
usesavedfuns = NULL,
clearenvfuns = NULL,
funlist = NULL,
envir = NULL,
...

)

growthparameters(model, ...)

Arguments

model An object of class bgmfit.

newdata An optional data frame to be used in estimation. If NULL (default), the newdata
is retrieved from the model.

resp A character string (default NULL) to specify response variable when process-
ing posterior draws for the univariate_by and multivariate models. See
bsitar() for details on univariate_by and multivariate models

dpar Optional name of a predicted distributional parameter. If specified, expected
predictions of this parameters are returned.

ndraws A positive integer indicating the number of posterior draws to be used in esti-
mation. If NULL (default), all draws are used.

draw_ids An integer indicating the specific posterior draw(s) to be used in estimation (de-
fault NULL).

summary A logical indicating whether only the estimate should be computed (TRUE), or
estimate along with SE and CI should be returned (FALSE, default). Setting
summary as FALSE will increase the computation time. Note that summary =
FALSE is must to get the correct estimates when re_formula = NULL.

robust A logical to specify the summarize options. If FALSE (the default) the mean
is used as the measure of central tendency and the standard deviation as the
measure of variability. If TRUE, the median and the median absolute deviation
(MAD) are applied instead. Ignored if summary is FALSE.

transform A function applied to individual draws from the posterior distribution, before
computing summaries. The argument transform is based on the marginaleffects::predictions().
This should not be confused with the transform from the brms::posterior_predict()
which is now deprecated.

re_formula Option to indicate whether or not to include the individual/group-level effects
in the estimation. When NA (default), the individual-level effects are excluded

52 growthparameters.bgmfit

and therefore population average growth parameters are computed. When NULL,
individual-level effects are included in the computation and hence the growth
parameters estimates returned are individual-specific. In both situations, (i.e„
NA or NULL), continuous and factor covariate(s) are appropriately included in
the estimation. The continuous covariates by default are set to their means (see
numeric_cov_at for details) whereas factor covariates are left unaltered thereby
allowing estimation of covariate specific population average and individual-
specific growth parameter.

peak A logical (default TRUE) to indicate whether or not to calculate the age at peak
velocity (APGV) and the peak velocity (PGV) parameters.

takeoff A logical (default FALSE) to indicate whether or not to calculate the age at takeoff
velocity (ATGV) and the takeoff growth velocity (TGV) parameters.

trough A logical (default FALSE) to indicate whether or not to calculate the age at ces-
sation of growth velocity (ACGV) and the cessation of growth velocity (CGV)
parameters.

acgv A logical (default FALSE) to indicate whether or not to calculate the age at ces-
sation of growth velocity from the velocity curve. If TRUE, age at cessation
of growth velocity (ACGV) and the cessation growth velocity (CGV) are cal-
culated based on the percentage of the peak growth velocity as defined by the
acgv_velocity argument (see below). The acgv_velocity is typically set at
10 percent of the peak growth velocity. The ACGV and CGV are calculated
along with the the uncertainty (SE and CI) around the ACGV and CGV param-
eters.

acgv_velocity Specify the percentage of the peak growth velocity to be used when estimating
acgv. The default value is 0.10 i.e., 10 percent of the peak growth velocity.

estimation_method

A character string to specify the estimation method when calculating the ve-
locity from the posterior draws. The 'fitted' method internally calls the
fitted_draws() whereas the option predict calls the predict_draws(). See
brms::fitted.brmsfit() and brms::predict.brmsfit() for derails.

allow_new_levels

A flag indicating if new levels of group-level effects are allowed (defaults to
FALSE). Only relevant if newdata is provided.

sample_new_levels

Indicates how to sample new levels for grouping factors specified in re_formula.
This argument is only relevant if newdata is provided and allow_new_levels is
set to TRUE. If "uncertainty" (default), each posterior sample for a new level
is drawn from the posterior draws of a randomly chosen existing level. Each
posterior sample for a new level may be drawn from a different existing level
such that the resulting set of new posterior draws represents the variation across
existing levels. If "gaussian", sample new levels from the (multivariate) nor-
mal distribution implied by the group-level standard deviations and correlations.
This options may be useful for conducting Bayesian power analysis or predict-
ing new levels in situations where relatively few levels where observed in the
old_data. If "old_levels", directly sample new levels from the existing levels,
where a new level is assigned all of the posterior draws of the same (randomly
chosen) existing level.

growthparameters.bgmfit 53

incl_autocor A flag indicating if correlation structures originally specified via autocor should
be included in the predictions. Defaults to TRUE.

numeric_cov_at An optional (named list) argument to specify the value of continuous covari-
ate(s). The default NULL option set the continuous covariate(s) at their mean. Al-
ternatively, a named list can be supplied to manually set these values. For exam-
ple, numeric_cov_at = list(xx = 2) will set the continuous covariate varibale
’xx’ at 2. The argument numeric_cov_at is ignored when no continuous co-
variate is included in the model.

levels_id An optional argument to specify the ids for hierarchical model (default NULL). It
is used only when model is applied to the data with 3 or more levels of hierarchy.
For a two level model, the levels_id is automatically inferred from the model
fit. Even for 3 or higher level model, the levels_id is inferred from the model
fit but under the assumption that hierarchy is specified from lowest to upper most
level i.e, id followed by study where id is nested within the study Note that it
is not guaranteed that the levels_id is sorted correctly, and therefore it is better
to set it manually when fitting a model with three or more levels of hierarchy.

avg_reffects An optional argument (default NULL) to calculate (marginal/average) curves and
growth parameters such as APGV and PGV. If specified, it must be a named list
indicating the over (typically level 1 predictor, such as age), feby (fixed effects,
typically a factor variable), and reby (typically NULL indicating that parameters
are integrated over the random effects) such as avg_reffects = list(feby =
'study', reby = NULL, over = 'age').

aux_variables An optional argument to specify the variable(s) that can be passed to the ipts
argument (see below). This is useful when fitting location scale models and
measurement error models. An indication to use aux_variables is when post
processing functions throw an error such as variable 'x' not found either
'data' or 'data2'

ipts An integer to set the length of the predictor variable to get a smooth velocity
curve. The NULL will return original values whereas an integer such as ipts
= 10 (default) will interpolate the predictor. It is important to note that these
interpolations do not alter the range of predictor when calculating population
average and/or the individual specific growth curves.

deriv_model A logical to specify whether to estimate velocity curve from the derivative func-
tion, or the differentiation of the distance curve. The argument deriv_model is
set to TRUE for those functions which need velocity curve such as growthparameters()
and plot_curves(), and NULL for functions which explicitly use the distance
curve (i.e., fitted values) such as loo_validation() and plot_ppc().

conf A numeric value (default 0.95) to compute CI. Internally, the conf is translated
into a paired probability values as c((1 - conf)/2, 1 - (1 - conf) / 2). For
conf = 0.95, this will compute 95% CI and the variables with lower and upper
limits will be named as Q.2.5 and Q.97.5.

xrange An integer to set the predictor range (i.e., age) when executing the interpola-
tion via ipts. The default NULL sets the individual specific predictor range
whereas code xrange = 1 sets identical range for individuals within the same
higher grouping variable (e.g., study). Code xrange = 2 sets the identical range
across the entire sample. Lastly, a paired numeric values can be supplied e.g.,
xrange = c(6, 20) to set the range within those values.

54 growthparameters.bgmfit

xrange_search A vector of length two, or a character string 'range' to set the range of predictor
variable (x) within which growth parameters are searched. This is useful when
there is more than one peak and user wants to summarize peak within a given
range of the x variable. Default xrange_search = NULL.

digits An integer (default 2) to set the decimal argument for the base::round() func-
tion.

seed An integer (default 123) that is passed to the estimation method.

future A logical (default FALSE) to specify whether or not to perform parallel compu-
tations. If set to TRUE, the future.apply::future_sapply() function is used
to summarize draws.

future_session A character string to set the session type when future = TRUE. The 'multisession'
(default) options sets the multisession whereas the 'multicore' sets the mul-
ticore session. Note that option 'multicore' is not supported on Windows
systems. For more details, see future.apply::future_sapply().

cores Number of cores to be used when running the parallel computations (if future
= TRUE). On non-Windows systems this argument can be set globally via the
mc.cores option. For the default NULL option, the number of cores are set au-
tomatically by calling the future::availableCores(). The number of cores
used are the maximum number of cores avaialble minus one, i.e., future::availableCores()
- 1.

parms_eval A logical to specify whether or not to get growth parameters on the fly. This is
for internal use only and mainly needed for compatibility across internal func-
tions.

idata_method A character string to indicate the interpolation method. The number of of inter-
polation points is set up the ipts argument. Options available for idata_method
are method 1 (specified as 'm1') and method 2 (specified as 'm2'). The method
1 ('m1') is adapted from the the iapvbs package and is documented here https:
//rdrr.io/github/Zhiqiangcao/iapvbs/src/R/exdata.R whereas method
2 ('m2') is based on the JMbayes package as documented here https://github.
com/drizopoulos/JMbayes/blob/master/R/dynPred_lme.R. The 'm1' method
works by internally constructing the data frame based on the model configura-
tion whereas the method 'm2' uses the exact data frame used in model fit and can
be accessed via fit$data. If idata_method = NULL, default, then method
'm2' is automatically set. Note that method 'm1' might fail in some cases when
model involves covariates particularly when model is fit as univariate_by.
Therefore, it is advised to switch to method 'm2' in case 'm1' results in error.

parms_method A character to specify the method used to when evaluating parms_eval. The
default is getPeak which uses the sitar::getPeak() function from the sitar
package. The alternative option is findpeaks that uses this findpeaks from the
pracma package. This is for internal use only and mainly needed for compati-
bility across internal functions.

verbose An optional argument (logical, default FALSE) to indicate whether to print infor-
mation collected during setting up the object(s).

fullframe A logical to indicate whether to return fullframe object in which newdata is
bind to the summary estimates. Note that fullframe can not be combined with
summary = FALSE. Furthermore, fullframe can only be used when idata_method

https://rdrr.io/github/Zhiqiangcao/iapvbs/src/R/exdata.R
https://rdrr.io/github/Zhiqiangcao/iapvbs/src/R/exdata.R
https://github.com/drizopoulos/JMbayes/blob/master/R/dynPred_lme.R
https://github.com/drizopoulos/JMbayes/blob/master/R/dynPred_lme.R

growthparameters.bgmfit 55

= 'm2'. A particular use case is when fitting univariate_by model. The
fullframe is mainly for internal use only.

dummy_to_factor

A named list (default NULL) that is used to convert dummy variables into a
factor variable. The named elements are factor.dummy, factor.name, and
factor.level. The factor.dummy is a vector of character strings that need to
be converted to a factor variable whereas the factor.name is a single character
string that is used to name the newly created factor variable. The factor.level
is used to name the levels of newly created factor. When factor.name is NULL,
then the factor name is internally set as 'factor.var'. If factor.level is
NULL, then names of factor levels are take from the factor.dummy i.e., the factor
levels are assigned same name as factor.dummy. Note that when factor.level
is not NULL, its length must be same as the length of the factor.dummy.

expose_function

An optional logical argument to indicate whether to expose Stan functions (de-
fault FALSE). Note that if user has already exposed Stan functions during model
fit by setting expose_function = TRUE in the bsitar(), then those exposed
functions are saved and can be used during post processing of the posterior
draws and therefore expose_function is by default set as FALSE in all post
processing functions except optimize_model(). For optimize_model(), the
default setting is expose_function = NULL. The reason is that each optimized
model has different Stan function and therefore it need to be re exposed and
saved. The expose_function = NULL implies that the setting for expose_function
is taken from the original model fit. Note that expose_function must be set to
TRUE when adding fit criteria and/or bayes_R2 during model optimization.

usesavedfuns A logical (default NULL) to indicate whether to use the already exposed and saved
Stan functions. Depending on whether the user have exposed Stan functions
within the bsitar() call via expose_functions argument in the bsitar(), the
usesavedfuns is automatically set to TRUE (if expose_functions = TRUE) or
FALSE (if expose_functions = FALSE). Therefore, manual setting of usesavedfuns
as TRUE/FALSE is rarely needed. This is for internal purposes only and mainly
used during the testing of the functions and therefore should not be used by users
as it might lead to unreliable estimates.

clearenvfuns A logical to indicate whether to clear the exposed function from the environment
(TRUE) or not (FALSE). If NULL (default), then clearenvfuns is set as TRUE when
usesavedfuns is TRUE, and FALSE if usesavedfuns is FALSE.

funlist A list (default NULL) to set function names. This is rarely used because re-
quired functions are automatically retrieved internally. A use case of funlist
when sigma_formula, sigma_formula_gr, or sigma_formula_gr_str uses a
function such as poly(age). See bsitar::bsitar() for details. The funlist
provides list of function names which have been defined externally and are avail-
able in the base::globalenv(). Note that for functions that need distance and
velocity curves such as plot_curves(..., opt = 'dv'), the funlist must in-
clude two functions where first will be used for the distance and second for the
velocity.

envir Environment used for function evaluation. The default is NULL which will set
parent.frame() as default environment. Note that since most of post process-
ing functions are based on brms, the functions needed for evaluation should

56 growthparameters.bgmfit

be in the .GlobalEnv. Therefore, it is strongly recommended to set envir =
globalenv() (or envir = .GlobalEnv). This is particularly true for the deriva-
tives such as velocity curve.

... Further arguments passed to brms::fitted.brmsfit() and brms::predict()
functions.

Details

The growthparameters() internally calls the fitted_draws() or the predict_draws() function
to estimate the first derivative based growth parameters for each posterior draw. The growth pa-
rameters estimated are age at peak growth velocity (APGV), peak growth velocity (PGV), age at
takeoff growth velocity (ATGV), takeoff growth velocity (TGV), age at cessation of growth ve-
locity (ACGV), and the cessation growth velocity (CGV). The APGV and PGV are estimated by
calling the sitar::getPeak() function whereas the ATGV and TGV are estimated by using the
sitar::getTakeoff() function. The sitar::getTrough() function is used to estimates ACGV
and CGV parameters. The parameters obtained from each posterior draw are then summarized ap-
propriately to get the estimates and the uncertainty (SEs and CIs) around these estimates. Please
note that it is not always possible to estimate cessation and takeoff growth parameters when there
are no distinct pre-peak or post-peak troughs.

Value

A data frame with either five columns (when summary = TRUE), or two columns when summary =
False (assuming re_formual = NULL). The first two columns common to each scenario (summary
= TRUE/False) are 'Parameter' and 'Estimate' which define the name of the growth parameter
(e.g., APGV, PGV etc), and estimate. When summary = TRUE, the three additional columns are
'Est.Error', and a paired vector of names defining the lower and upper limits of the CIs. The
CI columns are named as Q with appropriate suffix taken from the percentiles used to construct
these intervals (such as Q.2.5 and Q.97.5 where2.5 and 97.5 are the 0.025 and 0.975 percentiles
used to compute by the 95% CI by calling the quantile function. When re_formual = NULL, an
additional column is added that denotes the individual identifier (typically id).

Author(s)

Satpal Sandhu <satpal.sandhu@bristol.ac.uk>

Examples

Fit Bayesian SITAR model

To avoid mode estimation which takes time, the Bayesian SITAR model fit to
the 'berkeley_exdata' has been saved as an example fit ('berkeley_exfit').
See 'bsitar' function for details on 'berkeley_exdata' and 'berkeley_exfit'.

Check and confirm whether model fit object 'berkeley_exfit' exists
berkeley_exfit <- getNsObject(berkeley_exfit)

model <- berkeley_exfit

Population average age and velocity during the peak growth spurt

growthparameters_comparison.bgmfit 57

growthparameters(model, re_formula = NA)

Population average age and velocity during the take-off and the peak
growth spurt (APGV, PGV. ATGV, TGV)

growthparameters(model, re_formula = NA, peak = TRUE, takeoff = TRUE)

Individual-specific age and velocity during the take-off and the peak
growth spurt (APGV, PGV. ATGV, TGV)

growthparameters(model, re_formula = NULL, peak = TRUE, takeoff = TRUE)

growthparameters_comparison.bgmfit

Estimate and compare growth parameters

Description

The growthparameters_comparison() function estimates and compare growth parameters such as
peak growth velocity and the age at peak growth velocity. This function is a wrapper around the
marginaleffects::comparisons() and marginaleffects::avg_comparisons(). The marginaleffects::comparisons()
computes unit-level (conditional) estimates whereas marginaleffects::avg_comparisons() re-
turn average (marginal) estimates. A detailed explanation is available here. Note that for the
current use case, i.e., to estimate and compare growth parameters, the arguments variables and
comparion of marginaleffects::comparisons() and marginaleffects::avg_comparisons()
are modified (see below). Furthermore, comparison of growth parameters is performed via the
hypothesis argument of the marginaleffects::comparisons() and marginaleffects::avg_comparisons()
functions. Note that marginaleffects package is highly flexible and therefore it is expected that user
has a strong understanding of its working. Furthermore, since marginaleffects package is rapidly
evolving, the results obtained from the current implementation should be considered experimental.

Usage

S3 method for class 'bgmfit'
growthparameters_comparison(
model,
resp = NULL,
dpar = NULL,
ndraws = NULL,
draw_ids = NULL,
newdata = NULL,
datagrid = NULL,
re_formula = NA,
allow_new_levels = FALSE,
sample_new_levels = "gaussian",

https://marginaleffects.com

58 growthparameters_comparison.bgmfit

parameter = NULL,
xrange = 1,
acg_velocity = 0.1,
digits = 2,
numeric_cov_at = NULL,
aux_variables = NULL,
levels_id = NULL,
avg_reffects = NULL,
idata_method = NULL,
ipts = NULL,
seed = 123,
future = FALSE,
future_session = "multisession",
usedtplyr = FALSE,
usecollapse = TRUE,
parallel = FALSE,
cores = NULL,
average = FALSE,
plot = FALSE,
showlegends = NULL,
variables = NULL,
deriv = NULL,
deriv_model = NULL,
method = "custom",
pdraws = FALSE,
pdrawsp = FALSE,
pdrawsh = FALSE,
comparison = "difference",
type = NULL,
by = FALSE,
bys = NULL,
conf_level = 0.95,
transform = NULL,
cross = FALSE,
wts = NULL,
hypothesis = NULL,
equivalence = NULL,
eps = NULL,
constrats_by = FALSE,
constrats_at = FALSE,
constrats_subset = FALSE,
reformat = NULL,
estimate_center = NULL,
estimate_interval = NULL,
dummy_to_factor = NULL,
verbose = FALSE,
expose_function = FALSE,
usesavedfuns = NULL,

growthparameters_comparison.bgmfit 59

clearenvfuns = NULL,
funlist = NULL,
envir = NULL,
...

)

growthparameters_comparison(model, ...)

Arguments

model An object of class bgmfit.

resp A character string (default NULL) to specify response variable when process-
ing posterior draws for the univariate_by and multivariate models. See
bsitar() for details on univariate_by and multivariate models

dpar Optional name of a predicted distributional parameter. If specified, expected
predictions of this parameters are returned.

ndraws A positive integer indicating the number of posterior draws to be used in esti-
mation. If NULL (default), all draws are used.

draw_ids An integer indicating the specific posterior draw(s) to be used in estimation (de-
fault NULL).

newdata An optional data frame to be used in estimation. If NULL (default), the newdata
is retrieved from the model.

datagrid Generate a grid of user-specified values for use in the newdata argument in var-
ious functions of the marginaleffects package. This is useful to define where in
the predictor space we want to evaluate the quantities of interest. See marginaleffects::datagrid()
for details. The default value for the datagrid is NULL implying that no custom
grid is constructed. To set a data grid, the argument should be a data.frame
constructed by using the marginaleffects::datagrid() function, or else a
named list which are internally used for setting up the grid. For the user con-
venience, we also allow setting an empty list datagrid = list() in which case
essential arguments such as model, newdata are taken up from the respective ar-
guments specified elsewhere. Further, the level 1 predictor (such as age) and any
covariate included in the model fit (e.g., gender) are also automatically inferred
from the model object.

re_formula Option to indicate whether or not to include the individual/group-level effects
in the estimation. When NA (default), the individual-level effects are excluded
and therefore population average growth parameters are computed. When NULL,
individual-level effects are included in the computation and hence the growth
parameters estimates returned are individual-specific. In both situations, (i.e„
NA or NULL), continuous and factor covariate(s) are appropriately included in
the estimation. The continuous covariates by default are set to their means (see
numeric_cov_at for details) whereas factor covariates are left unaltered thereby
allowing estimation of covariate specific population average and individual-
specific growth parameter.

allow_new_levels

A flag indicating if new levels of group-level effects are allowed (defaults to
FALSE). Only relevant if newdata is provided.

60 growthparameters_comparison.bgmfit

sample_new_levels

Indicates how to sample new levels for grouping factors specified in re_formula.
This argument is only relevant if newdata is provided and allow_new_levels is
set to TRUE. If "uncertainty" (default), each posterior sample for a new level
is drawn from the posterior draws of a randomly chosen existing level. Each
posterior sample for a new level may be drawn from a different existing level
such that the resulting set of new posterior draws represents the variation across
existing levels. If "gaussian", sample new levels from the (multivariate) nor-
mal distribution implied by the group-level standard deviations and correlations.
This options may be useful for conducting Bayesian power analysis or predict-
ing new levels in situations where relatively few levels where observed in the
old_data. If "old_levels", directly sample new levels from the existing levels,
where a new level is assigned all of the posterior draws of the same (randomly
chosen) existing level.

parameter A single character string, or a character vector specifying the growth param-
eter(s) to be estimated. Options are 'tgv' (takeoff growth velocity), 'atgv'
(age at takeoff growth velocity), 'pgv' (peak growth velocity), 'apgv' (age at
peak growth velocity), 'cgv' (cessation growth velocity), and 'acgv' (age at
cessation growth velocity), and 'all'. If parameter = NULL (default), age at
peak growth velocity ('apgv') is estimated where when parameter = 'all',
all six parameters are estimated. Note that option 'all' can not be used when
argument by is TRUE.

xrange An integer to set the predictor range (i.e., age) when executing the interpola-
tion via ipts. The default NULL sets the individual specific predictor range
whereas code xrange = 1 sets identical range for individuals within the same
higher grouping variable (e.g., study). Code xrange = 2 sets the identical range
across the entire sample. Lastly, a paired numeric values can be supplied e.g.,
xrange = c(6, 20) to set the range within those values.

acg_velocity A real number to set the percentage of peak growth growth velocity as the
cessation velocity when estimating the cgv and acgv growth parameters. The
acg_velocity should be greater than 0 and less than 1. The default acg_velocity
= 0.10 indicates that a 10 per cent of the peak growth velocity will be used to get
the cessation velocity and the corresponding age at the cessation velocity. For
example if peak growth velocity estimate is 10 mm/year, then cessation growth
velocity is 1 mm/year.

digits An integer (default 2) to set the decimal places for the estimated growth param-
eters. The digits is passed on to the base::round() function.

numeric_cov_at An optional (named list) argument to specify the value of continuous covari-
ate(s). The default NULL option set the continuous covariate(s) at their mean. Al-
ternatively, a named list can be supplied to manually set these values. For exam-
ple, numeric_cov_at = list(xx = 2) will set the continuous covariate varibale
’xx’ at 2. The argument numeric_cov_at is ignored when no continuous co-
variate is included in the model.

aux_variables An optional argument to specify the variable(s) that can be passed to the ipts
argument (see below). This is useful when fitting location scale models and
measurement error models. An indication to use aux_variables is when post
processing functions throw an error such as variable 'x' not found either
'data' or 'data2'

growthparameters_comparison.bgmfit 61

levels_id An optional argument to specify the ids for hierarchical model (default NULL). It
is used only when model is applied to the data with 3 or more levels of hierarchy.
For a two level model, the levels_id is automatically inferred from the model
fit. Even for 3 or higher level model, the levels_id is inferred from the model
fit but under the assumption that hierarchy is specified from lowest to upper most
level i.e, id followed by study where id is nested within the study Note that it
is not guaranteed that the levels_id is sorted correctly, and therefore it is better
to set it manually when fitting a model with three or more levels of hierarchy.

avg_reffects An optional argument (default NULL) to calculate (marginal/average) curves and
growth parameters such as APGV and PGV. If specified, it must be a named list
indicating the over (typically level 1 predictor, such as age), feby (fixed effects,
typically a factor variable), and reby (typically NULL indicating that parameters
are integrated over the random effects) such as avg_reffects = list(feby =
'study', reby = NULL, over = 'age').

idata_method A character string to indicate the interpolation method. The number of of inter-
polation points is set up the ipts argument. Options available for idata_method
are method 1 (specified as 'm1') and method 2 (specified as 'm2'). The method
1 ('m1') is adapted from the the iapvbs package and is documented here https:
//rdrr.io/github/Zhiqiangcao/iapvbs/src/R/exdata.R whereas method
2 ('m2') is based on the JMbayes package as documented here https://github.
com/drizopoulos/JMbayes/blob/master/R/dynPred_lme.R. The 'm1' method
works by internally constructing the data frame based on the model configura-
tion whereas the method 'm2' uses the exact data frame used in model fit and can
be accessed via fit$data. If idata_method = NULL, default, then method
'm2' is automatically set. Note that method 'm1' might fail in some cases when
model involves covariates particularly when model is fit as univariate_by.
Therefore, it is advised to switch to method 'm2' in case 'm1' results in error.

ipts An integer to set the length of the predictor variable to get a smooth velocity
curve. The NULL will return original values whereas an integer such as ipts
= 10 (default) will interpolate the predictor. It is important to note that these
interpolations do not alter the range of predictor when calculating population
average and/or the individual specific growth curves.

seed An integer (default 123) that is passed to the estimation method.

future A logical (default FALSE) to specify whether or not to perform parallel compu-
tations. If set to TRUE, the future.apply::future_sapply() function is used
to summarize draws.

future_session A character string to set the session type when future = TRUE. The 'multisession'
(default) options sets the multisession whereas the 'multicore' sets the mul-
ticore session. Note that option 'multicore' is not supported on Windows
systems. For more details, see future.apply::future_sapply().

usedtplyr A logical (default FALSE) to indicate whether to use the dtplyr package for
summarizing the draws. The dtplyr package uses the data.table package as
back-end. Note that usedtplyris useful only when the data has a large num-
ber of observation. For routine uses, the usedtplyr does not make a large
difference in the performance because the marginaleffects package itself uses
the data.table package. The usedtplyr argument is evaluated only when the
method = 'custom'.

https://rdrr.io/github/Zhiqiangcao/iapvbs/src/R/exdata.R
https://rdrr.io/github/Zhiqiangcao/iapvbs/src/R/exdata.R
https://github.com/drizopoulos/JMbayes/blob/master/R/dynPred_lme.R
https://github.com/drizopoulos/JMbayes/blob/master/R/dynPred_lme.R

62 growthparameters_comparison.bgmfit

usecollapse A logical (default FALSE) to indicate whether to use the collapse package for
summarizing the draws.

parallel A logical (default FALSE) to indicate whether to use parallel computation (via
doParallel and foreach) when usecollapse = TRUE. Note that when parallel =
TRUE, the parallel::makeCluster() sets type as "PSOCK" which works on
all operating systems including Windows. To set type as "FORK", which is fast
(but does not works on Windows system), use parallel = "FORK".

cores A positive integer (default 1) to set up the number of cores to be used when
parallel = TRUE. To automatically detect the number of cores, please use cores
= NULL.

average A logical to indicate whether to internally call the marginaleffects::comparisons()
or the marginaleffects::avg_comparisons() function. If FALSE (default),
marginaleffects::comparisons() is called otherwise marginaleffects::avg_comparisons()
when average = TRUE.

plot A logical to specify whether to plot comparisons by calling the marginaleffects::plot_comparisons()
function (FALSE) or not (FALSE). If FALSE (default), then marginaleffects::comparisons()
or marginaleffects::avg_comparisons() are called to compute predictions
(see average for details).

showlegends An argument to specify whether to show legends (TRUE) or not (FALSE). If NULL
(default), then showlegends is internally set to TRUE if re_formula = NA, and
FALSE if re_formula = NULL.

variables For estimating growth parameters in the current use case, the variables is the
level 1 predictor such as age/time. The variables is a named list where value
is set via the esp argument (default 1e-6). If NULL, the variables is set inter-
nally by retrieving the relevant information from the model. Otherwise, user
can define it as follows: variables = list('x' = 1e-6) where 'x' is the level
1 predictor. Note that variables = list('age' = 1e-6) is the default behavior
for the marginaleffects because velocity is typically calculated by differentiat-
ing the distance curve via dydx approach, and therefore argument deriv is au-
tomatically set as 0 and deriv_model as FALSE. If user want to estimate param-
eters based on the model based first derivative, then argument deriv must be set
as 1 and internally argument variables is defined as variables = list('age'
= 0) i.e, original level 1 predictor variable, 'x'. It is important to consider that
if default behavior is used i.e, deriv = 0 and variables = list('x' = 1e-6),
then user can not pass additional arguments to the variables argument. On the
other hand, alternative approach i.e, deriv = 0 and variables = list('x' =
0), additional options can be passed to the marginaleffects::comparisons()
and marginaleffects::avg_comparisons() functions.

deriv A numeric to specify whether to estimate parameters based on the differentiation
of the distance curve or the model based first derivative. Please see argument
variables for more details.

deriv_model A logical to specify whether to estimate velocity curve from the derivative func-
tion, or the differentiation of the distance curve. The argument deriv_model is
set to TRUE for those functions which need velocity curve such as growthparameters()
and plot_curves(), and NULL for functions which explicitly use the distance
curve (i.e., fitted values) such as loo_validation() and plot_ppc().

growthparameters_comparison.bgmfit 63

method A character string to specify whether to make computation at post draw stage by
using the 'marginaleffects' machinery i.e., marginaleffects::comparisons()
(method = 'pkg') or via the custom functions written for efficiency and speed
(method = 'custom', default). Note that method = 'pkg' does not work except
for very simple cases and therefore and should be used cautiously. The method =
'custom' is the recommended and preferred method because it allows computa-
tion of more than one parameter simultaneously (such as 'apgv') and 'pgv', see
'parameter')), method = 'custom' is applied only during the post draw stage,
all comparison of multiple parameters simultaneously via the hypothesis argu-
ment, and makes it possible to add or return draws (see pdraws and pdraws for
details).

pdraws A character string (default FALSE) to indicate whether to return raw draws (if
pdraws = 'return'), add raw draws (if pdraws = 'add') to the final return ob-
ject, return summary of draws (if pdraws = 'returns'), or add summary of
draws (if pdraws = 'adds') to the final return object. See marginaleffects::posterior_draws()
for details.

pdrawsp A character string (default FALSE) to indicate whether to return the posterior
draws for parameters (if pdrawsp = 'return'). Note that summary of posterior
draws for parameters is the default returned object.

pdrawsh A character string (default FALSE) to indicate whether to return the posterior
draws for parameters (if pdrawsh = 'return'). Note that summary of posterior
draws for parameters is the default returned object.

comparison For estimating growth parameters in the current use case, options allowed for the
comparison are 'difference' and 'differenceavg'. Note that comparison
is a placeholder and is only used to setup the the internal function that estimates
'parameter' via sitar::getPeak(), sitar::getTakeoff() and sitar::getTrough()
functions to estimate various growth parameters. Options 'difference' and
'differenceavg' are internally restructured according to the user specified
hypothesis argument.

type string indicates the type (scale) of the predictions used to compute contrasts or
slopes. This can differ based on the model type, but will typically be a string
such as: "response", "link", "probs", or "zero". When an unsupported string
is entered, the model-specific list of acceptable values is returned in an error
message. When type is NULL, the first entry in the error message is used by
default.

by Aggregate unit-level estimates (aka, marginalize, average over). Valid inputs:
• FALSE: return the original unit-level estimates.
• TRUE: aggregate estimates for each term.
• Character vector of column names in newdata or in the data frame produced

by calling the function without the by argument.
• Data frame with a by column of group labels, and merging columns shared

by newdata or the data frame produced by calling the same function with-
out the by argument.

• See examples below.
• For more complex aggregations, you can use the FUN argument of the hypotheses()

function. See that function’s documentation and the Hypothesis Test vi-
gnettes on the marginaleffects website.

64 growthparameters_comparison.bgmfit

bys A character string (default NULL) to specify variables over which parameters
need to be summarized.

conf_level numeric value between 0 and 1. Confidence level to use to build a confidence
interval.

transform A function applied to individual draws from the posterior distribution, before
computing summaries. The argument transform is based on the marginaleffects::predictions().
This should not be confused with the transform from the brms::posterior_predict()
which is now deprecated.

cross • FALSE: Contrasts represent the change in adjusted predictions when one
predictor changes and all other variables are held constant.

• TRUE: Contrasts represent the changes in adjusted predictions when all the
predictors specified in the variables argument are manipulated simulta-
neously (a "cross-contrast").

wts logical, string or numeric: weights to use when computing average predictions,
contrasts or slopes. These weights only affect the averaging in avg_*() or with
the by argument, and not unit-level estimates. See ?weighted.mean

• string: column name of the weights variable in newdata. When supply-
ing a column name to wts, it is recommended to supply the original data
(including the weights variable) explicitly to newdata.

• numeric: vector of length equal to the number of rows in the original data
or in newdata (if supplied).

• FALSE: Equal weights.
• TRUE: Extract weights from the fitted object with insight::find_weights()

and use them when taking weighted averages of estimates. Warning: newdata=datagrid()
returns a single average weight, which is equivalent to using wts=FALSE

hypothesis specify a hypothesis test or custom contrast using a numeric value, vector, or
matrix; a string equation; string; a formula, or a function.

• Numeric:
– Single value: the null hypothesis used in the computation of Z and p

(before applying transform).
– Vector: Weights to compute a linear combination of (custom contrast

between) estimates. Length equal to the number of rows generated by
the same function call, but without the hypothesis argument.

– Matrix: Each column is a vector of weights, as describe above, used to
compute a distinct linear combination of (contrast between) estimates.
The column names of the matrix are used as labels in the output.

• String equation to specify linear or non-linear hypothesis tests. If the term
column uniquely identifies rows, terms can be used in the formula. Other-
wise, use b1, b2, etc. to identify the position of each parameter. The b*
wildcard can be used to test hypotheses on all estimates. If a named vector
is used, the names are used as labels in the output. Examples:

– hp = drat

– hp + drat = 12

– b1 + b2 + b3 = 0

– b* / b1 = 1

growthparameters_comparison.bgmfit 65

• String:
– "pairwise": pairwise differences between estimates in each row.
– "reference": differences between the estimates in each row and the es-

timate in the first row.
– "sequential": difference between an estimate and the estimate in the

next row.
– "meandev": difference between an estimate and the mean of all esti-

mates.
– "meanotherdev": difference between an estimate and the mean of all

other estimates, excluding the current one.
– "revpairwise", "revreference", "revsequential": inverse of the corre-

sponding hypotheses, as described above.
• Formula:

– comparison ~ pairs | group

– Left-hand side determines the type of comparison to conduct: difference
or ratio. If the left-hand side is empty, difference is chosen.

– Right-hand side determines the pairs of estimates to compare: reference,
sequential, or meandev

– Optional: Users can supply grouping variables after a vertical bar to
conduct comparisons withing subsets.

– Examples:

* ~ reference

* ratio ~ pairwise

* difference ~ pairwise | groupid

• Function:
– Accepts an argument x: object produced by a marginaleffects func-

tion or a data frame with column rowid and estimate

– Returns a data frame with columns term and estimate (mandatory)
and rowid (optional).

– The function can also accept optional input arguments: newdata, by,
draws.

– This function approach will not work for Bayesian models or with boot-
strapping. In those cases, it is easy to use posterior_draws() to ex-
tract and manipulate the draws directly.

• See the Examples section below and the vignette: https://marginaleffects.com/vignettes/hypothesis.html

equivalence Numeric vector of length 2: bounds used for the two-one-sided test (TOST) of
equivalence, and for the non-inferiority and non-superiority tests. See Details
section below.

eps NULL or numeric value which determines the step size to use when calculating
numerical derivatives: (f(x+eps)-f(x))/eps. When eps is NULL, the step size is
0.0001 multiplied by the difference between the maximum and minimum values
of the variable with respect to which we are taking the derivative. Changing eps
may be necessary to avoid numerical problems in certain models.

66 growthparameters_comparison.bgmfit

constrats_by A character vector (default FALSE) specifying the variable(s) by which esti-
mates and contrast (post draw stage) via the hypothesis argument should be
computed. Note that variable(s) specified in the constrats_by should be sub
set of the variables included in the 'by' argument. If constrats_by = NULL,
then all variables are copied from the 'by' argument (i.e., constrats_by =
by) except the level-1 predictor (such as age). This automatic behavior of set-
ting at ’unique’ values can be turned off by using constrats_by = FALSE. The
constrats_by argument is only evaluated when method = 'custom' and the
hypothesis is not NULL.

constrats_at A named list (default FALSE) to specify the values at which estimates and con-
trast (post draw stage) via the hypothesis argument should be computed. The
constrats_at can be specified as a one of the following strings 'max', 'min',
'unique', 'range' (e.g., constrats_at = list(age = 'min')) or else as a
numeric value or a numeric vector (e.g., constrats_at = list(age = c(6, 7))).
When constrats_at = NULL, any level-1 predictor (such as age) is be automat-
ically set at its ’unique’ values i.e., constrats_at = list(age = 'unique').
This automatic behavior of setting at ’unique’ values can be turned off by using
constrats_at = FALSE. Note that constrats_at only subsets the data that has
been set up the marginaleffects::datagrid() or specified as the newdata ar-
gument. In case no match is found, an error will be triggered. The constrats_at
argument is only evaluated when method = 'custom' and the hypothesis is not
NULL.

constrats_subset

A named list (default FALSE) to subset the estimates (post draw stage) at which
contrast are computed via the hypothesis argument. The use of the constrats_subset
argument is similar to the constrats_at with the exception that while constrats_at
subsets the data based on the values of a variable, the constrats_at filters the
character vector of a variables such as sub-setting individuals constrats_at
= list(id = c('id1', 'id2')) where 'id1' and 'id1' are individual iden-
tifiers. The constrats_subset argument is only evaluated when method =
'custom' and the hypothesis is not NULL.

reformat A logical (default TRUE) to reformat the output returned by the marginaleffects
as a data.frame with column names re-defined as follows: conf.low as Q2.5,
and conf.high as Q97.5 (assuming that conf_int = 0.95). Also, following
columns are dropped from the data frame: term, contrast, tmp_idx, predicted_lo,
predicted_hi, predicted.

estimate_center

A character string (default NULL) to specify whether to center estimate as 'mean'
or as 'median'. Note that estimate_center is used to set the global options as
follows:
options("marginaleffects_posterior_center" = "mean"), or
options("marginaleffects_posterior_center" = "median")
The pre-specified global options are restored on exit via the base::on.exit().

estimate_interval

A character string (default NULL) to specify whether to compute credible inter-
vals as equal-tailed intervals, 'eti' or highest density intervals, 'hdi'. Note
that estimate_interval is used to set the global options as follows:
options("marginaleffects_posterior_interval" = "eti"), or

growthparameters_comparison.bgmfit 67

options("marginaleffects_posterior_interval" = "hdi")
The pre-specified global options are restored on exit via the base::on.exit().

dummy_to_factor

A named list (default NULL) that is used to convert dummy variables into a
factor variable. The named elements are factor.dummy, factor.name, and
factor.level. The factor.dummy is a vector of character strings that need to
be converted to a factor variable whereas the factor.name is a single character
string that is used to name the newly created factor variable. The factor.level
is used to name the levels of newly created factor. When factor.name is NULL,
then the factor name is internally set as 'factor.var'. If factor.level is
NULL, then names of factor levels are take from the factor.dummy i.e., the factor
levels are assigned same name as factor.dummy. Note that when factor.level
is not NULL, its length must be same as the length of the factor.dummy.

verbose An optional argument (logical, default FALSE) to indicate whether to print infor-
mation collected during setting up the object(s).

expose_function

An optional logical argument to indicate whether to expose Stan functions (de-
fault FALSE). Note that if user has already exposed Stan functions during model
fit by setting expose_function = TRUE in the bsitar(), then those exposed
functions are saved and can be used during post processing of the posterior
draws and therefore expose_function is by default set as FALSE in all post
processing functions except optimize_model(). For optimize_model(), the
default setting is expose_function = NULL. The reason is that each optimized
model has different Stan function and therefore it need to be re exposed and
saved. The expose_function = NULL implies that the setting for expose_function
is taken from the original model fit. Note that expose_function must be set to
TRUE when adding fit criteria and/or bayes_R2 during model optimization.

usesavedfuns A logical (default NULL) to indicate whether to use the already exposed and saved
Stan functions. Depending on whether the user have exposed Stan functions
within the bsitar() call via expose_functions argument in the bsitar(), the
usesavedfuns is automatically set to TRUE (if expose_functions = TRUE) or
FALSE (if expose_functions = FALSE). Therefore, manual setting of usesavedfuns
as TRUE/FALSE is rarely needed. This is for internal purposes only and mainly
used during the testing of the functions and therefore should not be used by users
as it might lead to unreliable estimates.

clearenvfuns A logical to indicate whether to clear the exposed function from the environment
(TRUE) or not (FALSE). If NULL (default), then clearenvfuns is set as TRUE when
usesavedfuns is TRUE, and FALSE if usesavedfuns is FALSE.

funlist A list (default NULL) to set function names. This is rarely used because re-
quired functions are automatically retrieved internally. A use case of funlist
when sigma_formula, sigma_formula_gr, or sigma_formula_gr_str uses a
function such as poly(age). See bsitar::bsitar() for details. The funlist
provides list of function names which have been defined externally and are avail-
able in the base::globalenv(). Note that for functions that need distance and
velocity curves such as plot_curves(..., opt = 'dv'), the funlist must in-
clude two functions where first will be used for the distance and second for the
velocity.

68 growthparameters_comparison.bgmfit

envir Environment used for function evaluation. The default is NULL which will set
parent.frame() as default environment. Note that since most of post process-
ing functions are based on brms, the functions needed for evaluation should
be in the .GlobalEnv. Therefore, it is strongly recommended to set envir =
globalenv() (or envir = .GlobalEnv). This is particularly true for the deriva-
tives such as velocity curve.

... Further arguments passed to brms::fitted.brmsfit() and brms::predict()
functions.

Details

The growthparameters_comparison function estimates and returns the following growth param-
eters:

• pgv - peak growth velocity

• apgv - age at peak growth velocity

• tgv - takeoff growth velocity

• atgv - age at takeoff growth velocity

• cgv - cessation growth velocity

• acgv - age at cessation growth velocity

The takeoff growth velocity is the lowest velocity just before the peak starts and it indicates the
beginning of the pubertal growth spurt. The cessation growth velocity indicates the end of the active
pubertal growth spurt and is calculated as some percentage of the peak velocity (pgv). Typically, a
10 percent of the pgv is considered as a good indicator of the cessation of the active pubertal growth
spurt (Hardin et al. 2022). The percentage is controlled via the acg_velocity argument which
takes a positive real value bounded between 0 and 1 (default 0.1 implying 10 percent).

Value

A data frame objects with estimates and CIs for computed parameter(s)

Author(s)

Satpal Sandhu <satpal.sandhu@bristol.ac.uk>

References

Hardin AM, Knigge RP, Oh HS, Valiathan M, Duren DL, McNulty KP, Middleton KM, Sherwood
RJ (2022). “Estimating Craniofacial Growth Cessation: Comparison of Asymptote- and Rate-Based
Methods.” The Cleft Palate Craniofacial Journal, 59(2), 230-238. doi:10.1177/10556656211002675,
PMID: 33998905.

See Also

marginaleffects::comparisons() marginaleffects::avg_comparisons() marginaleffects::plot_comparisons()

https://doi.org/10.1177/10556656211002675

loo_validation.bgmfit 69

Examples

Fit Bayesian SITAR model

To avoid mode estimation which takes time, the Bayesian SITAR model fit to
the 'berkeley_exdata' has been saved as an example fit ('berkeley_exfit').
See 'bsitar' function for details on 'berkeley_exdata' and 'berkeley_exfit'.

Note that since no covariate is part of the model fit, the below example
doesn't make sense and included here only for the purpose of completeness.

Check and confirm whether model fit object 'berkeley_exfit' exists
berkeley_exfit <- getNsObject(berkeley_exfit)

model <- berkeley_exfit

growthparameters_comparison(model, parameter = 'apgv', ndraws = 10)

loo_validation.bgmfit Perform leave-one-out (loo) cross-validation

Description

The loo_validation() is a wrapper around the brms::loo() function to perform approximate leave-
one-out cross-validation based on the posterior likelihood. See brms::loo() for more details.

Usage

S3 method for class 'bgmfit'
loo_validation(
model,
compare = TRUE,
resp = NULL,
dpar = NULL,
pointwise = FALSE,
moment_match = FALSE,
reloo = FALSE,
k_threshold = 0.7,
save_psis = FALSE,
moment_match_args = list(),
reloo_args = list(),
model_names = NULL,
ndraws = NULL,
draw_ids = NULL,
cores = 1,

70 loo_validation.bgmfit

deriv_model = NULL,
verbose = FALSE,
dummy_to_factor = NULL,
expose_function = FALSE,
usesavedfuns = NULL,
clearenvfuns = NULL,
envir = NULL,
...

)

loo_validation(model, ...)

Arguments

model An object of class bgmfit.

compare A flag indicating if the information criteria of the models should be compared
to each other via loo::loo_compare().

resp Optional names of response variables. If specified, predictions are performed
only for the specified response variables.

dpar Optional name of a predicted distributional parameter. If specified, expected
predictions of this parameters are returned.

pointwise A flag indicating whether to compute the full log-likelihood matrix at once or
separately for each observation. The latter approach is usually considerably
slower but requires much less working memory. Accordingly, if one runs into
memory issues, pointwise = TRUE is the way to go.

moment_match A logical argument to indicate whether loo::loo_moment_match() should be
applied on problematic observations. Defaults to FALSE. For most models, mo-
ment matching will only work if you have set save_pars = save_pars(all =
TRUE) when fitting the model with brms::brm(). See brms::loo_moment_match()
for more details.

reloo A logical argument to indicate whether brms::reloo() should be applied on
problematic observations. Defaults to FALSE.

k_threshold The Pareto k threshold for which observations loo_moment_match or reloo
is applied if argument moment_match or reloo is TRUE. Defaults to 0.7. See
pareto_k_ids for more details.

save_psis Should the "psis" object created internally be saved in the returned object? For
more details see loo.

moment_match_args

An optional list of additional arguments passed to loo::loo_moment_match().

reloo_args An optional list of additional arguments passed to brms::reloo().

model_names If NULL (the default) will use model names derived from deparsing the call. Oth-
erwise will use the passed values as model names.

ndraws A positive integer indicating the number of posterior draws to be used in esti-
mation. If NULL (default), all draws are used.

draw_ids An integer indicating the specific posterior draw(s) to be used in estimation (de-
fault NULL).

loo_validation.bgmfit 71

cores Number of cores to be used when running the parallel computations (if future
= TRUE). On non-Windows systems this argument can be set globally via the
mc.cores option. For the default NULL option, the number of cores are set au-
tomatically by calling the future::availableCores(). The number of cores
used are the maximum number of cores avaialble minus one, i.e., future::availableCores()
- 1.

deriv_model A logical to specify whether to estimate velocity curve from the derivative func-
tion, or the differentiation of the distance curve. The argument deriv_model is
set to TRUE for those functions which need velocity curve such as growthparameters()
and plot_curves(), and NULL for functions which explicitly use the distance
curve (i.e., fitted values) such as loo_validation() and plot_ppc().

verbose An optional argument (logical, default FALSE) to indicate whether to print infor-
mation collected during setting up the object(s).

dummy_to_factor

A named list (default NULL) that is used to convert dummy variables into a
factor variable. The named elements are factor.dummy, factor.name, and
factor.level. The factor.dummy is a vector of character strings that need to
be converted to a factor variable whereas the factor.name is a single character
string that is used to name the newly created factor variable. The factor.level
is used to name the levels of newly created factor. When factor.name is NULL,
then the factor name is internally set as 'factor.var'. If factor.level is
NULL, then names of factor levels are take from the factor.dummy i.e., the factor
levels are assigned same name as factor.dummy. Note that when factor.level
is not NULL, its length must be same as the length of the factor.dummy.

expose_function

An optional logical argument to indicate whether to expose Stan functions (de-
fault FALSE). Note that if user has already exposed Stan functions during model
fit by setting expose_function = TRUE in the bsitar(), then those exposed
functions are saved and can be used during post processing of the posterior
draws and therefore expose_function is by default set as FALSE in all post
processing functions except optimize_model(). For optimize_model(), the
default setting is expose_function = NULL. The reason is that each optimized
model has different Stan function and therefore it need to be re exposed and
saved. The expose_function = NULL implies that the setting for expose_function
is taken from the original model fit. Note that expose_function must be set to
TRUE when adding fit criteria and/or bayes_R2 during model optimization.

usesavedfuns A logical (default NULL) to indicate whether to use the already exposed and saved
Stan functions. Depending on whether the user have exposed Stan functions
within the bsitar() call via expose_functions argument in the bsitar(), the
usesavedfuns is automatically set to TRUE (if expose_functions = TRUE) or
FALSE (if expose_functions = FALSE). Therefore, manual setting of usesavedfuns
as TRUE/FALSE is rarely needed. This is for internal purposes only and mainly
used during the testing of the functions and therefore should not be used by users
as it might lead to unreliable estimates.

clearenvfuns A logical to indicate whether to clear the exposed function from the environment
(TRUE) or not (FALSE). If NULL (default), then clearenvfuns is set as TRUE when
usesavedfuns is TRUE, and FALSE if usesavedfuns is FALSE.

72 loo_validation.bgmfit

envir Environment used for function evaluation. The default is NULL which will set
parent.frame() as default environment. Note that since most of post process-
ing functions are based on brms, the functions needed for evaluation should
be in the .GlobalEnv. Therefore, it is strongly recommended to set envir =
globalenv() (or envir = .GlobalEnv). This is particularly true for the deriva-
tives such as velocity curve.

... Additional arguments passed to the brms::loo() function. Please see brms::loo
for details on various options available.

Details

See loo::loo_compare() for details on model comparisons. For bgmfit objects, LOO is an alias of
loo. Use method brms::add_criterion() to store information criteria in the fitted model object
for later usage.

Value

If only one model object is provided, then an object of class loo is returned. If multiple objects are
provided, an object of class loolist.

Author(s)

Satpal Sandhu <satpal.sandhu@bristol.ac.uk>

See Also

brms::loo()

Examples

Fit Bayesian SITAR model

To avoid mode estimation which takes time, the Bayesian SITAR model fit to
the 'berkeley_exdata' has been saved as an example fit ('berkeley_exfit').
See 'bsitar' function for details on 'berkeley_exdata' and 'berkeley_exfit'.

Check and confirm whether model fit object 'berkeley_exfit' exists
berkeley_exfit <- getNsObject(berkeley_exfit)

model <- berkeley_exfit

loo_validation(model, cores = 1)

marginal_comparison.bgmfit 73

marginal_comparison.bgmfit

Estimate and compare growth curves

Description

The marginal_comparison() function estimates and compare growth curves such as distance and
velocity. This function is a wrapper around the marginaleffects::comparisons() and marginaleffects::avg_comparisons().
The marginaleffects::comparisons() computes unit-level (conditional) estimates whereas marginaleffects::avg_comparisons()
return average (marginal) estimates. A detailed explanation is available here. Note that marginal-
effects package is highly flexible and therefore it is expected that user has a strong understanding of
its working. Furthermore, since marginaleffects package is rapidly evolving, the results obtained
from the current implementation should be considered experimental.

Usage

S3 method for class 'bgmfit'
marginal_comparison(
model,
resp = NULL,
dpar = NULL,
ndraws = NULL,
draw_ids = NULL,
newdata = NULL,
datagrid = NULL,
re_formula = NA,
allow_new_levels = FALSE,
sample_new_levels = "gaussian",
xrange = 1,
digits = 2,
numeric_cov_at = NULL,
aux_variables = NULL,
levels_id = NULL,
avg_reffects = NULL,
idata_method = NULL,
ipts = NULL,
seed = 123,
future = FALSE,
future_session = "multisession",
cores = NULL,
average = FALSE,
plot = FALSE,
showlegends = NULL,
variables = NULL,
deriv = NULL,
deriv_model = NULL,
method = "pkg",

https://marginaleffects.com

74 marginal_comparison.bgmfit

comparison = "difference",
type = NULL,
by = FALSE,
conf_level = 0.95,
transform = NULL,
cross = FALSE,
wts = NULL,
hypothesis = NULL,
equivalence = NULL,
eps = NULL,
constrats_by = NULL,
constrats_at = NULL,
reformat = NULL,
estimate_center = NULL,
estimate_interval = NULL,
usedtplyr = FALSE,
dummy_to_factor = NULL,
verbose = FALSE,
expose_function = FALSE,
usesavedfuns = NULL,
clearenvfuns = NULL,
funlist = NULL,
envir = NULL,
...

)

marginal_comparison(model, ...)

Arguments

model An object of class bgmfit.

resp A character string (default NULL) to specify response variable when process-
ing posterior draws for the univariate_by and multivariate models. See
bsitar() for details on univariate_by and multivariate models

dpar Optional name of a predicted distributional parameter. If specified, expected
predictions of this parameters are returned.

ndraws A positive integer indicating the number of posterior draws to be used in esti-
mation. If NULL (default), all draws are used.

draw_ids An integer indicating the specific posterior draw(s) to be used in estimation (de-
fault NULL).

newdata An optional data frame to be used in estimation. If NULL (default), the newdata
is retrieved from the model.

datagrid Generate a grid of user-specified values for use in the newdata argument in var-
ious functions of the marginaleffects package. This is useful to define where in
the predictor space we want to evaluate the quantities of interest. See marginaleffects::datagrid()
for details. The default value for the datagrid is NULL implying that no custom
grid is constructed. To set a data grid, the argument should be a data.frame

marginal_comparison.bgmfit 75

constructed by using the marginaleffects::datagrid() function, or else a
named list which are internally used for setting up the grid. For the user con-
venience, we also allow setting an empty list datagrid = list() in which case
essential arguments such as model, newdata are taken up from the respective ar-
guments specified elsewhere. Further, the level 1 predictor (such as age) and any
covariate included in the model fit (e.g., gender) are also automatically inferred
from the model object.

re_formula Option to indicate whether or not to include the individual/group-level effects
in the estimation. When NA (default), the individual-level effects are excluded
and therefore population average growth parameters are computed. When NULL,
individual-level effects are included in the computation and hence the growth
parameters estimates returned are individual-specific. In both situations, (i.e„
NA or NULL), continuous and factor covariate(s) are appropriately included in
the estimation. The continuous covariates by default are set to their means (see
numeric_cov_at for details) whereas factor covariates are left unaltered thereby
allowing estimation of covariate specific population average and individual-
specific growth parameter.

allow_new_levels

A flag indicating if new levels of group-level effects are allowed (defaults to
FALSE). Only relevant if newdata is provided.

sample_new_levels

Indicates how to sample new levels for grouping factors specified in re_formula.
This argument is only relevant if newdata is provided and allow_new_levels is
set to TRUE. If "uncertainty" (default), each posterior sample for a new level
is drawn from the posterior draws of a randomly chosen existing level. Each
posterior sample for a new level may be drawn from a different existing level
such that the resulting set of new posterior draws represents the variation across
existing levels. If "gaussian", sample new levels from the (multivariate) nor-
mal distribution implied by the group-level standard deviations and correlations.
This options may be useful for conducting Bayesian power analysis or predict-
ing new levels in situations where relatively few levels where observed in the
old_data. If "old_levels", directly sample new levels from the existing levels,
where a new level is assigned all of the posterior draws of the same (randomly
chosen) existing level.

xrange An integer to set the predictor range (i.e., age) when executing the interpola-
tion via ipts. The default NULL sets the individual specific predictor range
whereas code xrange = 1 sets identical range for individuals within the same
higher grouping variable (e.g., study). Code xrange = 2 sets the identical range
across the entire sample. Lastly, a paired numeric values can be supplied e.g.,
xrange = c(6, 20) to set the range within those values.

digits An integer (default 2) to set the decimal places for the estimates. The digits is
passed on to the base::round() function.

numeric_cov_at An optional (named list) argument to specify the value of continuous covari-
ate(s). The default NULL option set the continuous covariate(s) at their mean. Al-
ternatively, a named list can be supplied to manually set these values. For exam-
ple, numeric_cov_at = list(xx = 2) will set the continuous covariate varibale
’xx’ at 2. The argument numeric_cov_at is ignored when no continuous co-
variate is included in the model.

76 marginal_comparison.bgmfit

aux_variables An optional argument to specify the variable(s) that can be passed to the ipts
argument (see below). This is useful when fitting location scale models and
measurement error models. An indication to use aux_variables is when post
processing functions throw an error such as variable 'x' not found either
'data' or 'data2'

levels_id An optional argument to specify the ids for hierarchical model (default NULL). It
is used only when model is applied to the data with 3 or more levels of hierarchy.
For a two level model, the levels_id is automatically inferred from the model
fit. Even for 3 or higher level model, the levels_id is inferred from the model
fit but under the assumption that hierarchy is specified from lowest to upper most
level i.e, id followed by study where id is nested within the study Note that it
is not guaranteed that the levels_id is sorted correctly, and therefore it is better
to set it manually when fitting a model with three or more levels of hierarchy.

avg_reffects An optional argument (default NULL) to calculate (marginal/average) curves and
growth parameters such as APGV and PGV. If specified, it must be a named list
indicating the over (typically level 1 predictor, such as age), feby (fixed effects,
typically a factor variable), and reby (typically NULL indicating that parameters
are integrated over the random effects) such as avg_reffects = list(feby =
'study', reby = NULL, over = 'age').

idata_method A character string to indicate the interpolation method. The number of of inter-
polation points is set up the ipts argument. Options available for idata_method
are method 1 (specified as 'm1') and method 2 (specified as 'm2'). The method
1 ('m1') is adapted from the the iapvbs package and is documented here https:
//rdrr.io/github/Zhiqiangcao/iapvbs/src/R/exdata.R whereas method
2 ('m2') is based on the JMbayes package as documented here https://github.
com/drizopoulos/JMbayes/blob/master/R/dynPred_lme.R. The 'm1' method
works by internally constructing the data frame based on the model configura-
tion whereas the method 'm2' uses the exact data frame used in model fit and can
be accessed via fit$data. If idata_method = NULL, default, then method
'm2' is automatically set. Note that method 'm1' might fail in some cases when
model involves covariates particularly when model is fit as univariate_by.
Therefore, it is advised to switch to method 'm2' in case 'm1' results in error.

ipts An integer to set the length of the predictor variable to get a smooth velocity
curve. The NULL will return original values whereas an integer such as ipts
= 10 (default) will interpolate the predictor. It is important to note that these
interpolations do not alter the range of predictor when calculating population
average and/or the individual specific growth curves.

seed An integer (default 123) that is passed to the estimation method.
future A logical (default FALSE) to specify whether or not to perform parallel compu-

tations. If set to TRUE, the future.apply::future_sapply() function is used
to summarize draws.

future_session A character string to set the session type when future = TRUE. The 'multisession'
(default) options sets the multisession whereas the 'multicore' sets the mul-
ticore session. Note that option 'multicore' is not supported on Windows
systems. For more details, see future.apply::future_sapply().

cores Number of cores to be used when running the parallel computations (if future
= TRUE). On non-Windows systems this argument can be set globally via the

https://rdrr.io/github/Zhiqiangcao/iapvbs/src/R/exdata.R
https://rdrr.io/github/Zhiqiangcao/iapvbs/src/R/exdata.R
https://github.com/drizopoulos/JMbayes/blob/master/R/dynPred_lme.R
https://github.com/drizopoulos/JMbayes/blob/master/R/dynPred_lme.R

marginal_comparison.bgmfit 77

mc.cores option. For the default NULL option, the number of cores are set au-
tomatically by calling the future::availableCores(). The number of cores
used are the maximum number of cores avaialble minus one, i.e., future::availableCores()
- 1.

average A logical to indicate whether to internally call the marginaleffects::comparisons()
or the marginaleffects::avg_comparisons() function. If FALSE (default),
marginaleffects::comparisons() is called otherwise marginaleffects::avg_comparisons()
when average = TRUE.

plot A logical to specify whether to plot comparisons by calling the marginaleffects::plot_comparisons()
function (FALSE) or not (FALSE). If FALSE (default), then marginaleffects::comparisons()
or marginaleffects::avg_comparisons() are called to compute predictions
(see average for details).

showlegends An argument to specify whether to show legends (TRUE) or not (FALSE). If NULL
(default), then showlegends is internally set to TRUE if re_formula = NA, and
FALSE if re_formula = NULL.

variables For estimating growth parameters in the current use case, the variables is the
level 1 predictor such as age/time. The variables is a named list where value
is set via the esp argument (default 1e-6). If NULL, the variables is set inter-
nally by retrieving the relevant information from the model. Otherwise, user
can define it as follows: variables = list('x' = 1e-6) where 'x' is the level
1 predictor. Note that variables = list('age' = 1e-6) is the default behavior
for the marginaleffects because velocity is typically calculated by differentiat-
ing the distance curve via dydx approach, and therefore argument deriv is au-
tomatically set as 0 and deriv_model as FALSE. If user want to estimate param-
eters based on the model based first derivative, then argument deriv must be set
as 1 and internally argument variables is defined as variables = list('age'
= 0) i.e, original level 1 predictor variable, 'x'. It is important to consider that
if default behavior is used i.e, deriv = 0 and variables = list('x' = 1e-6),
then user can not pass additional arguments to the variables argument. On the
other hand, alternative approach i.e, deriv = 0 and variables = list('x' =
0), additional options can be passed to the marginaleffects::comparisons()
and marginaleffects::avg_comparisons() functions.

deriv A numeric to specify whether to estimate parameters based on the differentiation
of the distance curve or the model based first derivative. Please see argument
variables for more details.

deriv_model A logical to specify whether to estimate velocity curve from the derivative func-
tion, or the differentiation of the distance curve. The argument deriv_model is
set to TRUE for those functions which need velocity curve such as growthparameters()
and plot_curves(), and NULL for functions which explicitly use the distance
curve (i.e., fitted values) such as loo_validation() and plot_ppc().

method A character string to specify whether to make computation at post draw stage by
using the 'marginaleffects' machinery i.e., marginaleffects::comparisons()
(method = 'pkg') or via the custom functions written for efficiency and speed
(method = 'custom', default). Note that method = 'custom' is useful and rather
needed when testing hypotheses. Note that when method = 'custom', marginaleffects::predictions()
and not the marginaleffects::comparisons() is used internally.

78 marginal_comparison.bgmfit

comparison For estimating growth parameters in the current use case, options allowed for the
comparison are 'difference' and 'differenceavg'. Note that comparison
is a placeholder and is only used to setup the the internal function that estimates
'parameter' via sitar::getPeak(), sitar::getTakeoff() and sitar::getTrough()
functions to estimate various growth parameters. Options 'difference' and
'differenceavg' are internally restructured according to the user specified
hypothesis argument.

type string indicates the type (scale) of the predictions used to compute contrasts or
slopes. This can differ based on the model type, but will typically be a string
such as: "response", "link", "probs", or "zero". When an unsupported string
is entered, the model-specific list of acceptable values is returned in an error
message. When type is NULL, the first entry in the error message is used by
default.

by Aggregate unit-level estimates (aka, marginalize, average over). Valid inputs:

• FALSE: return the original unit-level estimates.
• TRUE: aggregate estimates for each term.
• Character vector of column names in newdata or in the data frame produced

by calling the function without the by argument.
• Data frame with a by column of group labels, and merging columns shared

by newdata or the data frame produced by calling the same function with-
out the by argument.

• See examples below.
• For more complex aggregations, you can use the FUN argument of the hypotheses()

function. See that function’s documentation and the Hypothesis Test vi-
gnettes on the marginaleffects website.

conf_level numeric value between 0 and 1. Confidence level to use to build a confidence
interval.

transform A function applied to individual draws from the posterior distribution, before
computing summaries. The argument transform is based on the marginaleffects::predictions().
This should not be confused with the transform from the brms::posterior_predict()
which is now deprecated.

cross • FALSE: Contrasts represent the change in adjusted predictions when one
predictor changes and all other variables are held constant.

• TRUE: Contrasts represent the changes in adjusted predictions when all the
predictors specified in the variables argument are manipulated simulta-
neously (a "cross-contrast").

wts logical, string or numeric: weights to use when computing average predictions,
contrasts or slopes. These weights only affect the averaging in avg_*() or with
the by argument, and not unit-level estimates. See ?weighted.mean

• string: column name of the weights variable in newdata. When supply-
ing a column name to wts, it is recommended to supply the original data
(including the weights variable) explicitly to newdata.

• numeric: vector of length equal to the number of rows in the original data
or in newdata (if supplied).

• FALSE: Equal weights.

marginal_comparison.bgmfit 79

• TRUE: Extract weights from the fitted object with insight::find_weights()
and use them when taking weighted averages of estimates. Warning: newdata=datagrid()
returns a single average weight, which is equivalent to using wts=FALSE

hypothesis specify a hypothesis test or custom contrast using a numeric value, vector, or
matrix; a string equation; string; a formula, or a function.

• Numeric:
– Single value: the null hypothesis used in the computation of Z and p

(before applying transform).
– Vector: Weights to compute a linear combination of (custom contrast

between) estimates. Length equal to the number of rows generated by
the same function call, but without the hypothesis argument.

– Matrix: Each column is a vector of weights, as describe above, used to
compute a distinct linear combination of (contrast between) estimates.
The column names of the matrix are used as labels in the output.

• String equation to specify linear or non-linear hypothesis tests. If the term
column uniquely identifies rows, terms can be used in the formula. Other-
wise, use b1, b2, etc. to identify the position of each parameter. The b*
wildcard can be used to test hypotheses on all estimates. If a named vector
is used, the names are used as labels in the output. Examples:

– hp = drat

– hp + drat = 12

– b1 + b2 + b3 = 0

– b* / b1 = 1

• String:
– "pairwise": pairwise differences between estimates in each row.
– "reference": differences between the estimates in each row and the es-

timate in the first row.
– "sequential": difference between an estimate and the estimate in the

next row.
– "meandev": difference between an estimate and the mean of all esti-

mates.
– "meanotherdev": difference between an estimate and the mean of all

other estimates, excluding the current one.
– "revpairwise", "revreference", "revsequential": inverse of the corre-

sponding hypotheses, as described above.
• Formula:

– comparison ~ pairs | group

– Left-hand side determines the type of comparison to conduct: difference
or ratio. If the left-hand side is empty, difference is chosen.

– Right-hand side determines the pairs of estimates to compare: reference,
sequential, or meandev

– Optional: Users can supply grouping variables after a vertical bar to
conduct comparisons withing subsets.

– Examples:

* ~ reference

80 marginal_comparison.bgmfit

* ratio ~ pairwise

* difference ~ pairwise | groupid

• Function:
– Accepts an argument x: object produced by a marginaleffects func-

tion or a data frame with column rowid and estimate

– Returns a data frame with columns term and estimate (mandatory)
and rowid (optional).

– The function can also accept optional input arguments: newdata, by,
draws.

– This function approach will not work for Bayesian models or with boot-
strapping. In those cases, it is easy to use posterior_draws() to ex-
tract and manipulate the draws directly.

• See the Examples section below and the vignette: https://marginaleffects.com/vignettes/hypothesis.html
equivalence Numeric vector of length 2: bounds used for the two-one-sided test (TOST) of

equivalence, and for the non-inferiority and non-superiority tests. See Details
section below.

eps NULL or numeric value which determines the step size to use when calculating
numerical derivatives: (f(x+eps)-f(x))/eps. When eps is NULL, the step size is
0.0001 multiplied by the difference between the maximum and minimum values
of the variable with respect to which we are taking the derivative. Changing eps
may be necessary to avoid numerical problems in certain models.

constrats_by A character vector (default NULL) specifying the variable(s) by which hypothe-
ses (post draw stage) should be tested (see hypothesis argument). Note that
variable(s) specified in the constrats_by should be sub set of the variables
included in the 'by' argument.

constrats_at A character vector (default NULL) specifying the variable(s) at which hypothe-
ses (post draw stage) should be tested (see hypothesis argument). Note that
variable(s) specified in the constrats_at should be sub set of the variables in-
cluded in the 'by' argument. The constrats_at is particularly useful when
number of rows in the estimates is large. This is because the marginaleffects
does not allow hypotheses testing when the number of rows in the estimates is
more that 25.

reformat A logical (default TRUE) to reformat the output returned by the marginaleffects
as a data.frame with column names re-defined as follows: conf.low as Q2.5,
and conf.high as Q97.5 (assuming that conf_int = 0.95). Also, following
columns are dropped from the data frame: term, contrast, tmp_idx, predicted_lo,
predicted_hi, predicted.

estimate_center

A character string (default NULL) to specify whether to center estimate as 'mean'
or as 'median'. Note that estimate_center is used to set the global options as
follows:
options("marginaleffects_posterior_center" = "mean"), or
options("marginaleffects_posterior_center" = "median")
The pre-specified global options are restored on exit via the base::on.exit().

estimate_interval

A character string (default NULL) to specify whether to compute credible inter-
vals as equal-tailed intervals, 'eti' or highest density intervals, 'hdi'. Note

marginal_comparison.bgmfit 81

that estimate_interval is used to set the global options as follows:
options("marginaleffects_posterior_interval" = "eti"), or
options("marginaleffects_posterior_interval" = "hdi")
The pre-specified global options are restored on exit via the base::on.exit().

usedtplyr A logical (default FALSE) to indicate whether to use the dtplyr package for
summarizing the draws. The dtplyr package uses the data.table package as
back-end. Note that usedtplyris useful only when the data has a large num-
ber of observation. For routine uses, the usedtplyr does not make a large
difference in the performance because the marginaleffects package itself uses
the data.table package. The usedtplyr argument is evaluated only when the
method = 'custom'.

dummy_to_factor

A named list (default NULL) that is used to convert dummy variables into a
factor variable. The named elements are factor.dummy, factor.name, and
factor.level. The factor.dummy is a vector of character strings that need to
be converted to a factor variable whereas the factor.name is a single character
string that is used to name the newly created factor variable. The factor.level
is used to name the levels of newly created factor. When factor.name is NULL,
then the factor name is internally set as 'factor.var'. If factor.level is
NULL, then names of factor levels are take from the factor.dummy i.e., the factor
levels are assigned same name as factor.dummy. Note that when factor.level
is not NULL, its length must be same as the length of the factor.dummy.

verbose An optional argument (logical, default FALSE) to indicate whether to print infor-
mation collected during setting up the object(s).

expose_function

An optional logical argument to indicate whether to expose Stan functions (de-
fault FALSE). Note that if user has already exposed Stan functions during model
fit by setting expose_function = TRUE in the bsitar(), then those exposed
functions are saved and can be used during post processing of the posterior
draws and therefore expose_function is by default set as FALSE in all post
processing functions except optimize_model(). For optimize_model(), the
default setting is expose_function = NULL. The reason is that each optimized
model has different Stan function and therefore it need to be re exposed and
saved. The expose_function = NULL implies that the setting for expose_function
is taken from the original model fit. Note that expose_function must be set to
TRUE when adding fit criteria and/or bayes_R2 during model optimization.

usesavedfuns A logical (default NULL) to indicate whether to use the already exposed and saved
Stan functions. Depending on whether the user have exposed Stan functions
within the bsitar() call via expose_functions argument in the bsitar(), the
usesavedfuns is automatically set to TRUE (if expose_functions = TRUE) or
FALSE (if expose_functions = FALSE). Therefore, manual setting of usesavedfuns
as TRUE/FALSE is rarely needed. This is for internal purposes only and mainly
used during the testing of the functions and therefore should not be used by users
as it might lead to unreliable estimates.

clearenvfuns A logical to indicate whether to clear the exposed function from the environment
(TRUE) or not (FALSE). If NULL (default), then clearenvfuns is set as TRUE when
usesavedfuns is TRUE, and FALSE if usesavedfuns is FALSE.

82 marginal_comparison.bgmfit

funlist A list (default NULL) to set function names. This is rarely used because re-
quired functions are automatically retrieved internally. A use case of funlist
when sigma_formula, sigma_formula_gr, or sigma_formula_gr_str uses a
function such as poly(age). See bsitar::bsitar() for details. The funlist
provides list of function names which have been defined externally and are avail-
able in the base::globalenv(). Note that for functions that need distance and
velocity curves such as plot_curves(..., opt = 'dv'), the funlist must in-
clude two functions where first will be used for the distance and second for the
velocity.

envir Environment used for function evaluation. The default is NULL which will set
parent.frame() as default environment. Note that since most of post process-
ing functions are based on brms, the functions needed for evaluation should
be in the .GlobalEnv. Therefore, it is strongly recommended to set envir =
globalenv() (or envir = .GlobalEnv). This is particularly true for the deriva-
tives such as velocity curve.

... Further arguments passed to brms::fitted.brmsfit() and brms::predict()
functions.

Value

A data frame objects with estimates and CIs for computed parameter(s), or a list when method =
'custom' is and hypothesis is not NULL.

Author(s)

Satpal Sandhu <satpal.sandhu@bristol.ac.uk>

References

There are no references for Rd macro \insertAllCites on this help page.

See Also

marginaleffects::comparisons() marginaleffects::avg_comparisons() marginaleffects::plot_comparisons()

Examples

Fit Bayesian SITAR model

To avoid mode estimation which takes time, the Bayesian SITAR model fit to
the 'berkeley_exdata' has been saved as an example fit ('berkeley_exfit').
See 'bsitar' function for details on 'berkeley_exdata' and 'berkeley_exfit'.

Note that since no covariate is part of the model, the 'marginal_comparison'
doesn't make sense here. It's included only as a dummy example.

Check and confirm whether model fit object 'berkeley_exfit' exists
berkeley_exfit <- getNsObject(berkeley_exfit)

marginal_draws.bgmfit 83

model <- berkeley_exfit

marginal_comparison(model, draw_ids = 1)

marginal_draws.bgmfit Estimate growth curves

Description

The marginal_draws() function estimates and plots growth curves (distance and velocity) by using
marginaleffects package as back-end. This function can compute growth curves (via marginaleffects::predictions()),
average growth curves (via marginaleffects::avg_predictions()) or plot growth curves (via
marginaleffects::plot_predictions()). Please see here for details. Note that marginalef-
fects package is highly flexible and therefore it is expected that user has a strong understanding of
its working. Furthermore, since marginaleffects package is rapidly evolving, the results obtained
from the current implementation should be considered experimental.

Usage

S3 method for class 'bgmfit'
marginal_draws(
model,
resp = NULL,
dpar = NULL,
ndraws = NULL,
draw_ids = NULL,
newdata = NULL,
datagrid = NULL,
re_formula = NA,
allow_new_levels = FALSE,
sample_new_levels = "gaussian",
parameter = NULL,
xrange = 1,
acg_velocity = 0.1,
digits = 2,
numeric_cov_at = NULL,
aux_variables = NULL,
levels_id = NULL,
avg_reffects = NULL,
idata_method = NULL,
ipts = NULL,
seed = 123,
future = FALSE,
future_session = "multisession",
usedtplyr = FALSE,

https://marginaleffects.com/

84 marginal_draws.bgmfit

usecollapse = TRUE,
cores = NULL,
fullframe = FALSE,
average = FALSE,
plot = FALSE,
showlegends = NULL,
variables = NULL,
condition = NULL,
deriv = 0,
deriv_model = TRUE,
method = "pkg",
pdrawsp = FALSE,
pdrawsh = FALSE,
type = NULL,
by = NULL,
conf_level = 0.95,
transform = NULL,
byfun = NULL,
wts = NULL,
hypothesis = NULL,
equivalence = NULL,
constrats_by = NULL,
constrats_at = NULL,
reformat = NULL,
estimate_center = NULL,
estimate_interval = NULL,
dummy_to_factor = NULL,
verbose = FALSE,
expose_function = FALSE,
usesavedfuns = NULL,
clearenvfuns = NULL,
funlist = NULL,
envir = NULL,
...

)

marginal_draws(model, ...)

Arguments

model An object of class bgmfit.

resp A character string (default NULL) to specify response variable when process-
ing posterior draws for the univariate_by and multivariate models. See
bsitar() for details on univariate_by and multivariate models

dpar Optional name of a predicted distributional parameter. If specified, expected
predictions of this parameters are returned.

ndraws A positive integer indicating the number of posterior draws to be used in esti-
mation. If NULL (default), all draws are used.

marginal_draws.bgmfit 85

draw_ids An integer indicating the specific posterior draw(s) to be used in estimation (de-
fault NULL).

newdata An optional data frame to be used in estimation. If NULL (default), the newdata
is retrieved from the model.

datagrid Generate a grid of user-specified values for use in the newdata argument in var-
ious functions of the marginaleffects package. This is useful to define where in
the predictor space we want to evaluate the quantities of interest. See marginaleffects::datagrid()
for details. The default value for the datagrid is NULL implying that no custom
grid is constructed. To set a data grid, the argument should be a data.frame
constructed by using the marginaleffects::datagrid() function, or else a
named list which are internally used for setting up the grid. For the user con-
venience, we also allow setting an empty list datagrid = list() in which case
essential arguments such as model, newdata are taken up from the respective ar-
guments specified elsewhere. Further, the level 1 predictor (such as age) and any
covariate included in the model fit (e.g., gender) are also automatically inferred
from the model object.

re_formula Option to indicate whether or not to include the individual/group-level effects
in the estimation. When NA (default), the individual-level effects are excluded
and therefore population average growth parameters are computed. When NULL,
individual-level effects are included in the computation and hence the growth
parameters estimates returned are individual-specific. In both situations, (i.e„
NA or NULL), continuous and factor covariate(s) are appropriately included in
the estimation. The continuous covariates by default are set to their means (see
numeric_cov_at for details) whereas factor covariates are left unaltered thereby
allowing estimation of covariate specific population average and individual-
specific growth parameter.

allow_new_levels

A flag indicating if new levels of group-level effects are allowed (defaults to
FALSE). Only relevant if newdata is provided.

sample_new_levels

Indicates how to sample new levels for grouping factors specified in re_formula.
This argument is only relevant if newdata is provided and allow_new_levels is
set to TRUE. If "uncertainty" (default), each posterior sample for a new level
is drawn from the posterior draws of a randomly chosen existing level. Each
posterior sample for a new level may be drawn from a different existing level
such that the resulting set of new posterior draws represents the variation across
existing levels. If "gaussian", sample new levels from the (multivariate) nor-
mal distribution implied by the group-level standard deviations and correlations.
This options may be useful for conducting Bayesian power analysis or predict-
ing new levels in situations where relatively few levels where observed in the
old_data. If "old_levels", directly sample new levels from the existing levels,
where a new level is assigned all of the posterior draws of the same (randomly
chosen) existing level.

parameter A single character string, or a character vector specifying the growth param-
eter(s) to be estimated. Options are 'tgv' (takeoff growth velocity), 'atgv'
(age at takeoff growth velocity), 'pgv' (peak growth velocity), 'apgv' (age at
peak growth velocity), 'cgv' (cessation growth velocity), and 'acgv' (age at

86 marginal_draws.bgmfit

cessation growth velocity), and 'all'. If parameter = NULL (default), age at
peak growth velocity ('apgv') is estimated where when parameter = 'all',
all six parameters are estimated. Note that option 'all' can not be used when
argument by is TRUE.

xrange An integer to set the predictor range (i.e., age) when executing the interpola-
tion via ipts. The default NULL sets the individual specific predictor range
whereas code xrange = 1 sets identical range for individuals within the same
higher grouping variable (e.g., study). Code xrange = 2 sets the identical range
across the entire sample. Lastly, a paired numeric values can be supplied e.g.,
xrange = c(6, 20) to set the range within those values.

acg_velocity A real number to set the percentage of peak growth growth velocity as the
cessation velocity when estimating the cgv and acgv growth parameters. The
acg_velocity should be greater than 0 and less than 1. The default acg_velocity
= 0.10 indicates that a 10 per cent of the peak growth velocity will be used to get
the cessation velocity and the corresponding age at the cessation velocity. For
example if peak growth velocity estimate is 10 mm/year, then cessation growth
velocity is 1 mm/year.

digits An integer (default 2) to set the decimal argument for the base::round() func-
tion.

numeric_cov_at An optional (named list) argument to specify the value of continuous covari-
ate(s). The default NULL option set the continuous covariate(s) at their mean. Al-
ternatively, a named list can be supplied to manually set these values. For exam-
ple, numeric_cov_at = list(xx = 2) will set the continuous covariate varibale
’xx’ at 2. The argument numeric_cov_at is ignored when no continuous co-
variate is included in the model.

aux_variables An optional argument to specify the variable(s) that can be passed to the ipts
argument (see below). This is useful when fitting location scale models and
measurement error models. An indication to use aux_variables is when post
processing functions throw an error such as variable 'x' not found either
'data' or 'data2'

levels_id An optional argument to specify the ids for hierarchical model (default NULL). It
is used only when model is applied to the data with 3 or more levels of hierarchy.
For a two level model, the levels_id is automatically inferred from the model
fit. Even for 3 or higher level model, the levels_id is inferred from the model
fit but under the assumption that hierarchy is specified from lowest to upper most
level i.e, id followed by study where id is nested within the study Note that it
is not guaranteed that the levels_id is sorted correctly, and therefore it is better
to set it manually when fitting a model with three or more levels of hierarchy.

avg_reffects An optional argument (default NULL) to calculate (marginal/average) curves and
growth parameters such as APGV and PGV. If specified, it must be a named list
indicating the over (typically level 1 predictor, such as age), feby (fixed effects,
typically a factor variable), and reby (typically NULL indicating that parameters
are integrated over the random effects) such as avg_reffects = list(feby =
'study', reby = NULL, over = 'age').

idata_method A character string to indicate the interpolation method. The number of of inter-
polation points is set up the ipts argument. Options available for idata_method

marginal_draws.bgmfit 87

are method 1 (specified as 'm1') and method 2 (specified as 'm2'). The method
1 ('m1') is adapted from the the iapvbs package and is documented here https:
//rdrr.io/github/Zhiqiangcao/iapvbs/src/R/exdata.R whereas method
2 ('m2') is based on the JMbayes package as documented here https://github.
com/drizopoulos/JMbayes/blob/master/R/dynPred_lme.R. The 'm1' method
works by internally constructing the data frame based on the model configura-
tion whereas the method 'm2' uses the exact data frame used in model fit and can
be accessed via fit$data. If idata_method = NULL, default, then method
'm2' is automatically set. Note that method 'm1' might fail in some cases when
model involves covariates particularly when model is fit as univariate_by.
Therefore, it is advised to switch to method 'm2' in case 'm1' results in error.

ipts An integer to set the length of the predictor variable to get a smooth velocity
curve. The NULL will return original values whereas an integer such as ipts
= 10 (default) will interpolate the predictor. It is important to note that these
interpolations do not alter the range of predictor when calculating population
average and/or the individual specific growth curves.

seed An integer (default 123) that is passed to the estimation method.

future A logical (default FALSE) to specify whether or not to perform parallel compu-
tations. If set to TRUE, the future.apply::future_sapply() function is used
to summarize draws.

future_session A character string to set the session type when future = TRUE. The 'multisession'
(default) options sets the multisession whereas the 'multicore' sets the mul-
ticore session. Note that option 'multicore' is not supported on Windows
systems. For more details, see future.apply::future_sapply().

usedtplyr A logical (default FALSE) to indicate whether to use the dtplyr package for
summarizing the draws. The dtplyr package uses the data.table package as
back-end. Note that usedtplyris useful only when the data has a large num-
ber of observation. For routine uses, the usedtplyr does not make a large
difference in the performance because the marginaleffects package itself uses
the data.table package. The usedtplyr argument is evaluated only when the
method = 'custom'.

usecollapse A logical (default FALSE) to indicate whether to use the collapse package for
summarizing the draws.

cores Number of cores to be used when running the parallel computations (if future
= TRUE). On non-Windows systems this argument can be set globally via the
mc.cores option. For the default NULL option, the number of cores are set au-
tomatically by calling the future::availableCores(). The number of cores
used are the maximum number of cores avaialble minus one, i.e., future::availableCores()
- 1.

fullframe A logical to indicate whether to return fullframe object in which newdata is
bind to the summary estimates. Note that fullframe can not be combined with
summary = FALSE. Furthermore, fullframe can only be used when idata_method
= 'm2'. A particular use case is when fitting univariate_by model. The
fullframe is mainly for internal use only.

average A logical to indicate whether to internally call the marginaleffects::predictions()
or the marginaleffects::avg_predictions() function. If FALSE (default),

https://rdrr.io/github/Zhiqiangcao/iapvbs/src/R/exdata.R
https://rdrr.io/github/Zhiqiangcao/iapvbs/src/R/exdata.R
https://github.com/drizopoulos/JMbayes/blob/master/R/dynPred_lme.R
https://github.com/drizopoulos/JMbayes/blob/master/R/dynPred_lme.R

88 marginal_draws.bgmfit

marginaleffects::predictions() is called otherwise marginaleffects::avg_predictions()
when average = TRUE.

plot A logical to specify whether to plot predictions by calling the marginaleffects::plot_predictions()
function (FALSE) or not (FALSE). If FALSE (default), then marginaleffects::predictions()
or marginaleffects::avg_predictions() are called to compute predictions
(see average for details).

showlegends An argument to specify whether to show legends (TRUE) or not (FALSE). If NULL
(default), then showlegends is internally set to TRUE if re_formula = NA, and
FALSE if re_formula = NULL.

variables For estimating growth parameters in the current use case, the variables is the
level 1 predictor such as age/time. The variables is a named list where value
is set via the esp argument (default 1e-6). If NULL, the variables is set inter-
nally by retrieving the relevant information from the model. Otherwise, user
can define it as follows: variables = list('x' = 1e-6) where 'x' is the level
1 predictor. Note that variables = list('age' = 1e-6) is the default behavior
for the marginaleffects because velocity is typically calculated by differentiat-
ing the distance curve via dydx approach, and therefore argument deriv is au-
tomatically set as 0 and deriv_model as FALSE. If user want to estimate param-
eters based on the model based first derivative, then argument deriv must be set
as 1 and internally argument variables is defined as variables = list('age'
= 0) i.e, original level 1 predictor variable, 'x'. It is important to consider that
if default behavior is used i.e, deriv = 0 and variables = list('x' = 1e-6),
then user can not pass additional arguments to the variables argument. On the
other hand, alternative approach i.e, deriv = 0 and variables = list('x' =
0), additional options can be passed to the marginaleffects::comparisons()
and marginaleffects::avg_comparisons() functions.

condition Conditional predictions

• Character vector (max length 4): Names of the predictors to display.
• Named list (max length 4): List names correspond to predictors. List ele-

ments can be:
– Numeric vector
– Function which returns a numeric vector or a set of unique categorical

values
– Shortcut strings for common reference values: "minmax", "quartile",

"threenum"
• 1: x-axis. 2: color/shape. 3: facet (wrap if no fourth variable, otherwise

cols of grid). 4: facet (rows of grid).
• Numeric variables in positions 2 and 3 are summarized by Tukey’s five

numbers ?stats::fivenum

deriv An integer to indicate whether to estimate distance curve or its derivative (i.e.,
velocity curve). The deriv = 0 (default) is for the distance curve whereas deriv
= 1 for the velocity curve.

deriv_model A logical to specify whether to estimate velocity curve from the derivative func-
tion, or the differentiation of the distance curve. The argument deriv_model is
set to TRUE for those functions which need velocity curve such as growthparameters()

marginal_draws.bgmfit 89

and plot_curves(), and NULL for functions which explicitly use the distance
curve (i.e., fitted values) such as loo_validation() and plot_ppc().

method A character string to specify whether to make computation at post draw stage by
using the 'marginaleffects' machinery i.e., marginaleffects::comparisons()
(method = 'pkg') or via the custom functions written for efficiency and speed
(method = 'custom', default). Note that method = 'custom' is useful and rather
needed when testing hypotheses. Note that when method = 'custom', marginaleffects::predictions()
and not the marginaleffects::comparisons() is used internally.

pdrawsp A character string (default FALSE) to indicate whether to return the posterior
draws for parameters (if pdrawsp = 'return'). Note that summary of posterior
draws for parameters is the default returned object.

pdrawsh A character string (default FALSE) to indicate whether to return the posterior
draws for parameters (if pdrawsh = 'return'). Note that summary of posterior
draws for parameters is the default returned object.

type string indicates the type (scale) of the predictions used to compute contrasts or
slopes. This can differ based on the model type, but will typically be a string
such as: "response", "link", "probs", or "zero". When an unsupported string
is entered, the model-specific list of acceptable values is returned in an error
message. When type is NULL, the first entry in the error message is used by
default.

by Aggregate unit-level estimates (aka, marginalize, average over). Valid inputs:
• FALSE: return the original unit-level estimates.
• TRUE: aggregate estimates for each term.
• Character vector of column names in newdata or in the data frame produced

by calling the function without the by argument.
• Data frame with a by column of group labels, and merging columns shared

by newdata or the data frame produced by calling the same function with-
out the by argument.

• See examples below.
• For more complex aggregations, you can use the FUN argument of the hypotheses()

function. See that function’s documentation and the Hypothesis Test vi-
gnettes on the marginaleffects website.

conf_level numeric value between 0 and 1. Confidence level to use to build a confidence
interval.

transform A function applied to individual draws from the posterior distribution, before
computing summaries. The argument transform is based on the marginaleffects::predictions().
This should not be confused with the transform from the brms::posterior_predict()
which is now deprecated.

byfun A function such as mean() or sum() used to aggregate estimates within the sub-
groups defined by the by argument. NULL uses the mean() function. Must accept
a numeric vector and return a single numeric value. This is sometimes used to
take the sum or mean of predicted probabilities across outcome or predictor lev-
els. See examples section.

wts logical, string or numeric: weights to use when computing average predictions,
contrasts or slopes. These weights only affect the averaging in avg_*() or with
the by argument, and not unit-level estimates. See ?weighted.mean

90 marginal_draws.bgmfit

• string: column name of the weights variable in newdata. When supply-
ing a column name to wts, it is recommended to supply the original data
(including the weights variable) explicitly to newdata.

• numeric: vector of length equal to the number of rows in the original data
or in newdata (if supplied).

• FALSE: Equal weights.
• TRUE: Extract weights from the fitted object with insight::find_weights()

and use them when taking weighted averages of estimates. Warning: newdata=datagrid()
returns a single average weight, which is equivalent to using wts=FALSE

hypothesis specify a hypothesis test or custom contrast using a numeric value, vector, or
matrix; a string equation; string; a formula, or a function.

• Numeric:
– Single value: the null hypothesis used in the computation of Z and p

(before applying transform).
– Vector: Weights to compute a linear combination of (custom contrast

between) estimates. Length equal to the number of rows generated by
the same function call, but without the hypothesis argument.

– Matrix: Each column is a vector of weights, as describe above, used to
compute a distinct linear combination of (contrast between) estimates.
The column names of the matrix are used as labels in the output.

• String equation to specify linear or non-linear hypothesis tests. If the term
column uniquely identifies rows, terms can be used in the formula. Other-
wise, use b1, b2, etc. to identify the position of each parameter. The b*
wildcard can be used to test hypotheses on all estimates. If a named vector
is used, the names are used as labels in the output. Examples:

– hp = drat

– hp + drat = 12

– b1 + b2 + b3 = 0

– b* / b1 = 1

• String:
– "pairwise": pairwise differences between estimates in each row.
– "reference": differences between the estimates in each row and the es-

timate in the first row.
– "sequential": difference between an estimate and the estimate in the

next row.
– "meandev": difference between an estimate and the mean of all esti-

mates.
– "meanotherdev": difference between an estimate and the mean of all

other estimates, excluding the current one.
– "revpairwise", "revreference", "revsequential": inverse of the corre-

sponding hypotheses, as described above.
• Formula:

– comparison ~ pairs | group

– Left-hand side determines the type of comparison to conduct: difference
or ratio. If the left-hand side is empty, difference is chosen.

marginal_draws.bgmfit 91

– Right-hand side determines the pairs of estimates to compare: reference,
sequential, or meandev

– Optional: Users can supply grouping variables after a vertical bar to
conduct comparisons withing subsets.

– Examples:

* ~ reference

* ratio ~ pairwise

* difference ~ pairwise | groupid

• Function:
– Accepts an argument x: object produced by a marginaleffects func-

tion or a data frame with column rowid and estimate

– Returns a data frame with columns term and estimate (mandatory)
and rowid (optional).

– The function can also accept optional input arguments: newdata, by,
draws.

– This function approach will not work for Bayesian models or with boot-
strapping. In those cases, it is easy to use posterior_draws() to ex-
tract and manipulate the draws directly.

• See the Examples section below and the vignette: https://marginaleffects.com/vignettes/hypothesis.html

equivalence Numeric vector of length 2: bounds used for the two-one-sided test (TOST) of
equivalence, and for the non-inferiority and non-superiority tests. See Details
section below.

constrats_by A character vector (default NULL) specifying the variable(s) by which hypothe-
ses (post draw stage) should be tested (see hypothesis argument). Note that
variable(s) specified in the constrats_by should be sub set of the variables
included in the 'by' argument.

constrats_at A character vector (default NULL) specifying the variable(s) at which hypothe-
ses (post draw stage) should be tested (see hypothesis argument). Note that
variable(s) specified in the constrats_at should be sub set of the variables in-
cluded in the 'by' argument. The constrats_at is particularly useful when
number of rows in the estimates is large. This is because the marginaleffects
does not allow hypotheses testing when the number of rows in the estimates is
more that 25.

reformat A logical (default TRUE) to reformat the output returned by the marginaleffects
as a data.frame with column names re-defined as follows: conf.low as Q2.5,
and conf.high as Q97.5 (assuming that conf_int = 0.95). Also, following
columns are dropped from the data frame: term, contrast, tmp_idx, predicted_lo,
predicted_hi, predicted.

estimate_center

A character string (default NULL) to specify whether to center estimate as 'mean'
or as 'median'. Note that estimate_center is used to set the global options as
follows:
options("marginaleffects_posterior_center" = "mean"), or
options("marginaleffects_posterior_center" = "median")
The pre-specified global options are restored on exit via the base::on.exit().

92 marginal_draws.bgmfit

estimate_interval

A character string (default NULL) to specify whether to compute credible inter-
vals as equal-tailed intervals, 'eti' or highest density intervals, 'hdi'. Note
that estimate_interval is used to set the global options as follows:
options("marginaleffects_posterior_interval" = "eti"), or
options("marginaleffects_posterior_interval" = "hdi")
The pre-specified global options are restored on exit via the base::on.exit().

dummy_to_factor

A named list (default NULL) that is used to convert dummy variables into a
factor variable. The named elements are factor.dummy, factor.name, and
factor.level. The factor.dummy is a vector of character strings that need to
be converted to a factor variable whereas the factor.name is a single character
string that is used to name the newly created factor variable. The factor.level
is used to name the levels of newly created factor. When factor.name is NULL,
then the factor name is internally set as 'factor.var'. If factor.level is
NULL, then names of factor levels are take from the factor.dummy i.e., the factor
levels are assigned same name as factor.dummy. Note that when factor.level
is not NULL, its length must be same as the length of the factor.dummy.

verbose An optional argument (logical, default FALSE) to indicate whether to print infor-
mation collected during setting up the object(s).

expose_function

An optional logical argument to indicate whether to expose Stan functions (de-
fault FALSE). Note that if user has already exposed Stan functions during model
fit by setting expose_function = TRUE in the bsitar(), then those exposed
functions are saved and can be used during post processing of the posterior
draws and therefore expose_function is by default set as FALSE in all post
processing functions except optimize_model(). For optimize_model(), the
default setting is expose_function = NULL. The reason is that each optimized
model has different Stan function and therefore it need to be re exposed and
saved. The expose_function = NULL implies that the setting for expose_function
is taken from the original model fit. Note that expose_function must be set to
TRUE when adding fit criteria and/or bayes_R2 during model optimization.

usesavedfuns A logical (default NULL) to indicate whether to use the already exposed and saved
Stan functions. Depending on whether the user have exposed Stan functions
within the bsitar() call via expose_functions argument in the bsitar(), the
usesavedfuns is automatically set to TRUE (if expose_functions = TRUE) or
FALSE (if expose_functions = FALSE). Therefore, manual setting of usesavedfuns
as TRUE/FALSE is rarely needed. This is for internal purposes only and mainly
used during the testing of the functions and therefore should not be used by users
as it might lead to unreliable estimates.

clearenvfuns A logical to indicate whether to clear the exposed function from the environment
(TRUE) or not (FALSE). If NULL (default), then clearenvfuns is set as TRUE when
usesavedfuns is TRUE, and FALSE if usesavedfuns is FALSE.

funlist A list (default NULL) to set function names. This is rarely used because re-
quired functions are automatically retrieved internally. A use case of funlist
when sigma_formula, sigma_formula_gr, or sigma_formula_gr_str uses a
function such as poly(age). See bsitar::bsitar() for details. The funlist

marginal_draws.bgmfit 93

provides list of function names which have been defined externally and are avail-
able in the base::globalenv(). Note that for functions that need distance and
velocity curves such as plot_curves(..., opt = 'dv'), the funlist must in-
clude two functions where first will be used for the distance and second for the
velocity.

envir Environment used for function evaluation. The default is NULL which will set
parent.frame() as default environment. Note that since most of post process-
ing functions are based on brms, the functions needed for evaluation should
be in the .GlobalEnv. Therefore, it is strongly recommended to set envir =
globalenv() (or envir = .GlobalEnv). This is particularly true for the deriva-
tives such as velocity curve.

... Additional arguments passed to the brms::fitted.brmsfit() function. Please
see brms::fitted.brmsfit() for details on various options available.

Details

The marginal_draws() estimates fitted values (via brms::fitted.brmsfit()) or the posterior
draws from the posterior distribution (via brms::predict.brmsfit()) depending on the type ar-
gument.

Value

An array of predicted mean response values. See brms::fitted.brmsfit for details.

Author(s)

Satpal Sandhu <satpal.sandhu@bristol.ac.uk>

See Also

marginaleffects::predictions() marginaleffects::avg_predictions() marginaleffects::plot_predictions()

Examples

Fit Bayesian SITAR model

To avoid mode estimation which takes time, the Bayesian SITAR model fit to
the 'berkeley_exdata' has been saved as an example fit ('berkeley_exfit').
See 'bsitar' function for details on 'berkeley_exdata' and 'berkeley_exfit'.

Check and confirm whether model fit object 'berkeley_exfit' exists
berkeley_exfit <- getNsObject(berkeley_exfit)

model <- berkeley_exfit

Population average distance curve
marginal_draws(model, deriv = 0, re_formula = NA)

94 optimize_model.bgmfit

Individual-specific distance curves
marginal_draws(model, deriv = 0, re_formula = NULL)

Population average velocity curve
marginal_draws(model, deriv = 1, re_formula = NA)

Individual-specific velocity curves
marginal_draws(model, deriv = 1, re_formula = NULL)

optimize_model.bgmfit Optimize SITAR model

Description

Select the best fitting SITAR model that involves choosing the optimum degrees of freedom (df) for
the natural cubic-spline curve and the appropriate transformations of the predictor x and response y
variables.

Usage

S3 method for class 'bgmfit'
optimize_model(
model,
newdata = NULL,
optimize_df = NULL,
optimize_x = list(NULL, log, sqrt),
optimize_y = list(NULL, log, sqrt),
transform_prior_class = c("beta", "sd", "rsd", "sigma", "dpar"),
transform_beta_coef = c("b", "c", "d"),
transform_sd_coef = c("b", "c", "d"),
exclude_default_funs = TRUE,
add_fit_criteria = NULL,
add_bayes_R = NULL,
byresp = FALSE,
model_name = NULL,
overwrite = FALSE,
file = NULL,
force_save = FALSE,
digits = 2,
cores = 1,
verbose = FALSE,
expose_function = NULL,
usesavedfuns = FALSE,
clearenvfuns = NULL,
envir = NULL,
...

optimize_model.bgmfit 95

)

optimize_model(model, ...)

Arguments

model An object of class bgmfit.
newdata An optional data frame to be used in estimation. If NULL (default), the newdata

is retrieved from the model.
optimize_df A list of integers specifying the degree of freedom (df) values to be optimized.

If NULL (default), the df is taken from the original model. For optimization
over different df, say for example df 4 and df 5, the corresponding code is
optimize_df = list(4,5). For univariate_by and multivariate models,
optimize_df can be a single integer (e.g., optimize_df = 4) or a list (e.g.,
optimize_df = list(4,5)), or a a list of lists. As an example, consider op-
timization over df 4 and df 5 for the first sub model, and df 5 and df 6 for the
second sub model, the corresponding code is optimize_df = list(list(4,5),
list(5,6)).

optimize_x A vector specifying the transformations for the predictor variable (i.e., x). The
options available are NULL, 'log', 'sqrt', or their combinations. Note that
user need not to enclose these options in a single or double quotes as they are
take care of internally. The default setting is to explore all possible combination
i.e., optimize_x = list(NULL, log, sqrt). Similar to the optimize_df, user
can specify different optimize_x for univariate_by and multivariate sub
models.

optimize_y A vector specifying the transformations of the the response variable (i.e., y). The
approach and options available for optimize_y are same as described above for
the optimize_x.

transform_prior_class

A character vector (default NULL) specifying the transformations of location-
scale based priors (such as normal()) when response variable (i.e., y) is 'log'
or 'sqrt' transformed (currently available only for 'log' transformed y). The
prior types that can be transformed are 'beta', 'sd', 'rsd', 'sigma' and
'dpar'. Each prior type (i.e., 'beta', 'sd', 'rsd', 'sigma', 'dpar') spec-
ified via transform_prior_class is log transformed as follows:
log_location = log(location / sqrt(scale^2 / location^2 + 1)),
log_scale = sqrt(log(scale^2 / location^2 + 1)),
where location and scale are the original parameters supplied by the user and
the log_location and log_scale are the equivalent parameters on the log scale.
For more details, see a_prior_beta argument in bsitar() function. Note that
transform_prior_class is used on an experimental basis and therefore results
may not be what user intended. Thus we recommend to explicitly set the desired
prior on y scale.

transform_beta_coef

A character vector (default NULL) specifying the transformations of location-
scale based priors for specific regression coefficient(s) when response variable
(i.e., y) is 'log' or 'sqrt' transformed. The coefficient that could be trans-
formed are 'a', 'b', 'c', 'd' and 's'. The default is transform_beta_coef

96 optimize_model.bgmfit

= c('b',' b', 'd') which implies that parameters 'a', 'a' and 'a' will be
transformed whereas parameter 'a' will be left unchanged because default prior
for parameter 'a' is based on outcome y itself (e.g., a_prior_beta = normal(ymean,
ysd)) which has be transformed. Note that transform_beta_coef is used on
an experimental basis and therefore results may not be what user intended. Thus
we recommend to explicitly set the desired prior on y scale.

transform_sd_coef

A character vector (default NULL) specifying the transformations of location-
scale based priors for specific group level coefficient(s) when response variable
(i.e., y) is 'log' or 'sqrt' transformed. The coefficient that could be trans-
formed are 'a', 'b', 'c', 'd' and 's'. The default is transform_beta_coef
= c('b',' b', 'd'). Note that transform_sd_coef is used on an experimental
basis and therefore results may not be what user intended. Thus we recommend
to explicitly set the desired prior on y scale.

exclude_default_funs

A logical to indicate whether transformations for (x and y) variables used in
the original model fit should be excluded. If TRUE (default), the transformations
specified for the x and y variables in the original model fit are excluded from
the optimize_x and optimize_y. From example, if original model is fit with
xvar = log and yvar = NULL, then optimize_x is translated into optimize_x =
list(NULL, sqrt), and similarly optimize_y is reset as optimize_y = list(log,
sqrt).

add_fit_criteria

An optional argument (default NULL) to indicate whether to add fit criteria to
the returned model fit. Options available are 'loo' and 'waic'. Please see
brms::add_criterion() for details.

add_bayes_R An optional argument (default NULL) to indicate whether to add Bayesian R
square to the returned model fit. To estimate and add bayes_R2 to the model fit,
the argument add_bayes_R is set as add_bayes_R = 'bayes_R2'.

byresp A logical (default FALSE) to indicate if response wise fit criteria to be calculated.
This argument is evaluated only for the multivariate model in which user can
select whether to get joint calculation of point wise log likelihood (byresp =
FALSE) or response specific (byresp = TRUE). For, univariate_by model, the
only option available is to calculate separate point wise log likelihood for each
sub-model, i.e., byresp = TRUE.

model_name Optional name of the model. If NULL (the default) the name is taken from the
call to x.

overwrite Logical; Indicates if already stored fit indices should be overwritten. Defaults
to FALSE. Setting it to TRUE is useful for example when changing additional
arguments of an already stored criterion.

file Either NULL or a character string. In the latter case, the fitted model object
including the newly added criterion values is saved via saveRDS in a file named
after the string supplied in file. The .rds extension is added automatically. If
x was already stored in a file before, the file name will be reused automatically
(with a message) unless overwritten by file. In any case, file only applies if
new criteria were actually added via add_criterion or if force_save was set
to TRUE.

optimize_model.bgmfit 97

force_save Logical; only relevant if file is specified and ignored otherwise. If TRUE, the
fitted model object will be saved regardless of whether new criteria were added
via add_criterion.

digits An integer (default 2) to set the decimal argument for the base::round() func-
tion.

cores The number of cores to used in parallel processing (default 1). The argument
cores is passed to the brms::add_criterion().

verbose An optional argument (logical, default FALSE) to indicate whether to print infor-
mation collected during setting up the object(s).

expose_function

An optional logical argument to indicate whether to expose Stan functions (de-
fault FALSE). Note that if user has already exposed Stan functions during model
fit by setting expose_function = TRUE in the bsitar(), then those exposed
functions are saved and can be used during post processing of the posterior
draws and therefore expose_function is by default set as FALSE in all post
processing functions except optimize_model(). For optimize_model(), the
default setting is expose_function = NULL. The reason is that each optimized
model has different Stan function and therefore it need to be re exposed and
saved. The expose_function = NULL implies that the setting for expose_function
is taken from the original model fit. Note that expose_function must be set to
TRUE when adding fit criteria and/or bayes_R2 during model optimization.

usesavedfuns A logical (default NULL) to indicate whether to use the already exposed and saved
Stan functions. Depending on whether the user have exposed Stan functions
within the bsitar() call via expose_functions argument in the bsitar(), the
usesavedfuns is automatically set to TRUE (if expose_functions = TRUE) or
FALSE (if expose_functions = FALSE). Therefore, manual setting of usesavedfuns
as TRUE/FALSE is rarely needed. This is for internal purposes only and mainly
used during the testing of the functions and therefore should not be used by users
as it might lead to unreliable estimates.

clearenvfuns A logical to indicate whether to clear the exposed function from the environment
(TRUE) or not (FALSE). If NULL (default), then clearenvfuns is set as TRUE when
usesavedfuns is TRUE, and FALSE if usesavedfuns is FALSE.

envir Environment used for function evaluation. The default is NULL which will set
parent.frame() as default environment. Note that since most of post process-
ing functions are based on brms, the functions needed for evaluation should
be in the .GlobalEnv. Therefore, it is strongly recommended to set envir =
globalenv() (or envir = .GlobalEnv). This is particularly true for the deriva-
tives such as velocity curve.

... Other arguments passed to update_model.

Value

A list containing the optimized models of class bgmfit, and the the summary statistics if add_fit_criteria
and/or add_bayes_R are specified.

Author(s)

Satpal Sandhu <satpal.sandhu@bristol.ac.uk>

98 plot_conditional_effects.bgmfit

See Also

brms::add_criterion()

Examples

Fit Bayesian SITAR model

To avoid mode estimation which takes time, the Bayesian SITAR model fit to
the 'berkeley_exdata' has been saved as an example fit ('berkeley_exfit').
See 'bsitar' function for details on 'berkeley_exdata' and 'berkeley_exfit'.

Check and confirm whether model fit object 'berkeley_exfit' exists
berkeley_exfit <- getNsObject(berkeley_exfit)

model <- berkeley_exfit

Below example shows dummy call to optimization to save time.
Note that in case degree of freedom and both optimize_x and optimize_y are
NULL (i.e., nothing to optimize), the original model object is returned.
To explicitly get this information whether model is being optimized or not,
user can set verbose = TRUE. The verbose = TRUE also useful in getting the
information regarding what all arguments have been changed as compared to
the original model.

model2 <- optimize_model(model,
optimize_df = NULL,
optimize_x = NULL,
optimize_y = NULL,
verbose = TRUE)

plot_conditional_effects.bgmfit

Visualize conditional effects of predictor

Description

Display conditional effects of one or more numeric and/or categorical predictors including two-way
interaction effects.

Usage

S3 method for class 'bgmfit'
plot_conditional_effects(
model,

plot_conditional_effects.bgmfit 99

effects = NULL,
conditions = NULL,
int_conditions = NULL,
re_formula = NA,
spaghetti = FALSE,
surface = FALSE,
categorical = FALSE,
ordinal = FALSE,
method = "posterior_epred",
transform = NULL,
resolution = 100,
select_points = 0,
too_far = 0,
prob = 0.95,
robust = TRUE,
newdata = NULL,
ndraws = NULL,
dpar = NULL,
draw_ids = NULL,
levels_id = NULL,
resp = NULL,
ipts = 10,
deriv = 0,
deriv_model = NULL,
idata_method = NULL,
verbose = FALSE,
dummy_to_factor = NULL,
expose_function = FALSE,
usesavedfuns = NULL,
clearenvfuns = NULL,
funlist = NULL,
envir = NULL,
...

)

plot_conditional_effects(model, ...)

Arguments

model An object of class bgmfit.

effects An optional character vector naming effects (main effects or interactions) for
which to compute conditional plots. Interactions are specified by a : between
variable names. If NULL (the default), plots are generated for all main effects and
two-way interactions estimated in the model. When specifying effects man-
ually, all two-way interactions (including grouping variables) may be plotted
even if not originally modeled.

conditions An optional data.frame containing variable values to condition on. Each effect
defined in effects will be plotted separately for each row of conditions. Val-

100 plot_conditional_effects.bgmfit

ues in the cond__ column will be used as titles of the subplots. If cond__ is not
given, the row names will be used for this purpose instead. It is recommended
to only define a few rows in order to keep the plots clear. See make_conditions
for an easy way to define conditions. If NULL (the default), numeric variables
will be conditionalized by using their means and factors will get their first level
assigned. NA values within factors are interpreted as if all dummy variables of
this factor are zero. This allows, for instance, to make predictions of the grand
mean when using sum coding.

int_conditions An optional named list whose elements are vectors of values of the variables
specified in effects. At these values, predictions are evaluated. The names of
int_conditions have to match the variable names exactly. Additionally, the
elements of the vectors may be named themselves, in which case their names
appear as labels for the conditions in the plots. Instead of vectors, functions
returning vectors may be passed and are applied on the original values of the
corresponding variable. If NULL (the default), predictions are evaluated at the
mean and at mean + / − sd for numeric predictors and at all categories for
factor-like predictors.

re_formula A formula containing group-level effects to be considered in the conditional
predictions. If NULL, include all group-level effects; if NA (default), include no
group-level effects.

spaghetti Logical. Indicates if predictions should be visualized via spaghetti plots. Only
applied for numeric predictors. If TRUE, it is recommended to set argument
ndraws to a relatively small value (e.g., 100) in order to reduce computation
time.

surface Logical. Indicates if interactions or two-dimensional smooths should be visu-
alized as a surface. Defaults to FALSE. The surface type can be controlled via
argument stype of the related plotting method.

categorical Logical. Indicates if effects of categorical or ordinal models should be shown in
terms of probabilities of response categories. Defaults to FALSE.

ordinal (Deprecated) Please use argument categorical. Logical. Indicates if effects in
ordinal models should be visualized as a raster with the response categories on
the y-axis. Defaults to FALSE.

method Method used to obtain predictions. Can be set to "posterior_epred" (the de-
fault), "posterior_predict", or "posterior_linpred". For more details, see
the respective function documentations.

transform A function or a character string naming a function to be applied on the predicted
responses before summary statistics are computed. Only allowed if method =
"posterior_predict".

resolution Number of support points used to generate the plots. Higher resolution leads to
smoother plots. Defaults to 100. If surface is TRUE, this implies 10000 support
points for interaction terms, so it might be necessary to reduce resolution
when only few RAM is available.

select_points Positive number. Only relevant if points or rug are set to TRUE: Actual data
points of numeric variables that are too far away from the values specified in
conditions can be excluded from the plot. Values are scaled into the unit inter-
val and then points more than select_points from the values in conditions
are excluded. By default, all points are used.

plot_conditional_effects.bgmfit 101

too_far Positive number. For surface plots only: Grid points that are too far away from
the actual data points can be excluded from the plot. too_far determines what
is too far. The grid is scaled into the unit square and then grid points more than
too_far from the predictor variables are excluded. By default, all grid points
are used. Ignored for non-surface plots.

prob A value between 0 and 1 indicating the desired probability to be covered by the
uncertainty intervals. The default is 0.95.

robust If TRUE (the default) the median is used as the measure of central tendency. If
FALSE the mean is used instead.

newdata An optional data frame to be used in estimation. If NULL (default), the newdata
is retrieved from the model.

ndraws A positive integer indicating the number of posterior draws to be used in esti-
mation. If NULL (default), all draws are used.

dpar Optional name of a predicted distributional parameter. If specified, expected
predictions of this parameters are returned.

draw_ids An integer indicating the specific posterior draw(s) to be used in estimation (de-
fault NULL).

levels_id An optional argument to specify the ids for hierarchical model (default NULL). It
is used only when model is applied to the data with 3 or more levels of hierarchy.
For a two level model, the levels_id is automatically inferred from the model
fit. Even for 3 or higher level model, the levels_id is inferred from the model
fit but under the assumption that hierarchy is specified from lowest to upper most
level i.e, id followed by study where id is nested within the study Note that it
is not guaranteed that the levels_id is sorted correctly, and therefore it is better
to set it manually when fitting a model with three or more levels of hierarchy.

resp A character string (default NULL) to specify response variable when process-
ing posterior draws for the univariate_by and multivariate models. See
bsitar() for details on univariate_by and multivariate models

ipts An integer to set the length of the predictor variable to get a smooth velocity
curve. The NULL will return original values whereas an integer such as ipts
= 10 (default) will interpolate the predictor. It is important to note that these
interpolations do not alter the range of predictor when calculating population
average and/or the individual specific growth curves.

deriv An integer to indicate whether to estimate distance curve or its derivative (i.e.,
velocity curve). The deriv = 0 (default) is for the distance curve whereas deriv
= 1 for the velocity curve.

deriv_model A logical to specify whether to estimate velocity curve from the derivative func-
tion, or the differentiation of the distance curve. The argument deriv_model is
set to TRUE for those functions which need velocity curve such as growthparameters()
and plot_curves(), and NULL for functions which explicitly use the distance
curve (i.e., fitted values) such as loo_validation() and plot_ppc().

idata_method A character string to indicate the interpolation method. The number of of inter-
polation points is set up the ipts argument. Options available for idata_method
are method 1 (specified as 'm1') and method 2 (specified as 'm2'). The method
1 ('m1') is adapted from the the iapvbs package and is documented here https:

https://rdrr.io/github/Zhiqiangcao/iapvbs/src/R/exdata.R

102 plot_conditional_effects.bgmfit

//rdrr.io/github/Zhiqiangcao/iapvbs/src/R/exdata.R whereas method
2 ('m2') is based on the JMbayes package as documented here https://github.
com/drizopoulos/JMbayes/blob/master/R/dynPred_lme.R. The 'm1' method
works by internally constructing the data frame based on the model configura-
tion whereas the method 'm2' uses the exact data frame used in model fit and can
be accessed via fit$data. If idata_method = NULL, default, then method
'm2' is automatically set. Note that method 'm1' might fail in some cases when
model involves covariates particularly when model is fit as univariate_by.
Therefore, it is advised to switch to method 'm2' in case 'm1' results in error.

verbose An optional argument (logical, default FALSE) to indicate whether to print infor-
mation collected during setting up the object(s).

dummy_to_factor

A named list (default NULL) that is used to convert dummy variables into a
factor variable. The named elements are factor.dummy, factor.name, and
factor.level. The factor.dummy is a vector of character strings that need to
be converted to a factor variable whereas the factor.name is a single character
string that is used to name the newly created factor variable. The factor.level
is used to name the levels of newly created factor. When factor.name is NULL,
then the factor name is internally set as 'factor.var'. If factor.level is
NULL, then names of factor levels are take from the factor.dummy i.e., the factor
levels are assigned same name as factor.dummy. Note that when factor.level
is not NULL, its length must be same as the length of the factor.dummy.

expose_function

An optional logical argument to indicate whether to expose Stan functions (de-
fault FALSE). Note that if user has already exposed Stan functions during model
fit by setting expose_function = TRUE in the bsitar(), then those exposed
functions are saved and can be used during post processing of the posterior
draws and therefore expose_function is by default set as FALSE in all post
processing functions except optimize_model(). For optimize_model(), the
default setting is expose_function = NULL. The reason is that each optimized
model has different Stan function and therefore it need to be re exposed and
saved. The expose_function = NULL implies that the setting for expose_function
is taken from the original model fit. Note that expose_function must be set to
TRUE when adding fit criteria and/or bayes_R2 during model optimization.

usesavedfuns A logical (default NULL) to indicate whether to use the already exposed and saved
Stan functions. Depending on whether the user have exposed Stan functions
within the bsitar() call via expose_functions argument in the bsitar(), the
usesavedfuns is automatically set to TRUE (if expose_functions = TRUE) or
FALSE (if expose_functions = FALSE). Therefore, manual setting of usesavedfuns
as TRUE/FALSE is rarely needed. This is for internal purposes only and mainly
used during the testing of the functions and therefore should not be used by users
as it might lead to unreliable estimates.

clearenvfuns A logical to indicate whether to clear the exposed function from the environment
(TRUE) or not (FALSE). If NULL (default), then clearenvfuns is set as TRUE when
usesavedfuns is TRUE, and FALSE if usesavedfuns is FALSE.

funlist A list (default NULL) to set function names. This is rarely used because re-
quired functions are automatically retrieved internally. A use case of funlist

https://rdrr.io/github/Zhiqiangcao/iapvbs/src/R/exdata.R
https://rdrr.io/github/Zhiqiangcao/iapvbs/src/R/exdata.R
https://github.com/drizopoulos/JMbayes/blob/master/R/dynPred_lme.R
https://github.com/drizopoulos/JMbayes/blob/master/R/dynPred_lme.R

plot_conditional_effects.bgmfit 103

when sigma_formula, sigma_formula_gr, or sigma_formula_gr_str uses a
function such as poly(age). See bsitar::bsitar() for details. The funlist
provides list of function names which have been defined externally and are avail-
able in the base::globalenv(). Note that for functions that need distance and
velocity curves such as plot_curves(..., opt = 'dv'), the funlist must in-
clude two functions where first will be used for the distance and second for the
velocity.

envir Environment used for function evaluation. The default is NULL which will set
parent.frame() as default environment. Note that since most of post process-
ing functions are based on brms, the functions needed for evaluation should
be in the .GlobalEnv. Therefore, it is strongly recommended to set envir =
globalenv() (or envir = .GlobalEnv). This is particularly true for the deriva-
tives such as velocity curve.

... Additional arguments passed to the brms::conditional_effects() function.
Please see brms::conditional_effects() for details.

Details

The plot_conditional_effects() is a wrapper around the brms::conditional_effects(). The
brms::conditional_effects() function from the brms package can used to plot the fitted (dis-
tance) curve when response (e.g., height) is not transformed. However, when the outcome is log or
square root transformed, the brms::conditional_effects() will return the fitted curve on the log
or square root scale whereas the plot_conditional_effects() will return the fitted curve on the orig-
inal scale. Furthermore, the plot_conditional_effects() also plots the velocity curve on the original
scale after making required back-transformation. Apart from these differences, both these func-
tions (brms::conditional_effects and plot_conditional_effects() work in the same manner. In other
words, user can specify all the arguments which are available in the brms::conditional_effects().

Value

An object of class ’brms_conditional_effects’ which is a named list with one data.frame per effect
containing all information required to generate conditional effects plots. See brms::conditional_effects
for details.

Author(s)

Satpal Sandhu <satpal.sandhu@bristol.ac.uk>

See Also

brms::conditional_effects()

Examples

Fit Bayesian SITAR model

To avoid mode estimation which takes time, the Bayesian SITAR model fit to
the 'berkeley_exdata' has been saved as an example fit ('berkeley_exfit').
See 'bsitar' function for details on 'berkeley_exdata' and 'berkeley_exfit'.

104 plot_curves.bgmfit

Check and confirm whether model fit object 'berkeley_exfit' exists
berkeley_exfit <- getNsObject(berkeley_exfit)

model <- berkeley_exfit

Population average distance curve
plot_conditional_effects(model, deriv = 0, re_formula = NA)

Individual-specific distance curves
plot_conditional_effects(model, deriv = 0, re_formula = NULL)

Population average velocity curve
plot_conditional_effects(model, deriv = 1, re_formula = NA)

Individual-specific velocity curves
plot_conditional_effects(model, deriv = 1, re_formula = NULL)

plot_curves.bgmfit Plot growth curves

Description

The plot_curves() provides visualization of six different types of growth curves that are plot-
ted by using the ggplot2 package. The plot_curves() also allows users to make their own de-
tailed plots from the data returned as a data.frame. Note that an alternative approach is to use
marginal_draws() function that not only allows estimation of adjusted curves but also makes it
possible to compare them across groups by using the hypotheses argument.

Usage

S3 method for class 'bgmfit'
plot_curves(
model,
opt = "dv",
apv = FALSE,
bands = NULL,
conf = 0.95,
resp = NULL,
dpar = NULL,
ndraws = NULL,
draw_ids = NULL,
newdata = NULL,
summary = FALSE,
digits = 2,
re_formula = NULL,

plot_curves.bgmfit 105

numeric_cov_at = NULL,
aux_variables = NULL,
levels_id = NULL,
avg_reffects = NULL,
ipts = 10,
deriv_model = TRUE,
xrange = NULL,
xrange_search = NULL,
takeoff = FALSE,
trough = FALSE,
acgv = FALSE,
acgv_velocity = 0.1,
seed = 123,
estimation_method = "fitted",
allow_new_levels = FALSE,
sample_new_levels = "uncertainty",
incl_autocor = TRUE,
robust = FALSE,
transform = NULL,
future = FALSE,
future_session = "multisession",
cores = NULL,
trim = 0,
layout = "single",
linecolor = NULL,
linecolor1 = NULL,
linecolor2 = NULL,
label.x = NULL,
label.y = NULL,
legendpos = NULL,
linetype.apv = NULL,
linewidth.main = NULL,
linewidth.apv = NULL,
linetype.groupby = NA,
color.groupby = NA,
band.alpha = NULL,
show_age_takeoff = TRUE,
show_age_peak = TRUE,
show_age_cessation = TRUE,
show_vel_takeoff = FALSE,
show_vel_peak = FALSE,
show_vel_cessation = FALSE,
returndata = FALSE,
returndata_add_parms = FALSE,
parms_eval = FALSE,
idata_method = NULL,
parms_method = "getPeak",
verbose = FALSE,

106 plot_curves.bgmfit

fullframe = NULL,
dummy_to_factor = NULL,
expose_function = FALSE,
usesavedfuns = NULL,
clearenvfuns = NULL,
funlist = NULL,
envir = NULL,
...

)

plot_curves(model, ...)

Arguments

model An object of class bgmfit.

opt A character string containing letter(s) corresponding to the following plotting
options: ’d’ for population average distance curve, ’v’ for population average
velocity curve, ’D’ for individual-specific distance curves, ’V’ for individual-
specific velocity curves, ’u’ for unadjusted individual-specific distance curves,
and ’a’ for adjusted individual-specific distance curves (adjusted for the random
effects). Options ’d’ and ’D’ can not be specified simultaneously. Likewise,
Options ’v’ and ’V’ can not be specified simultaneously. All other combinations
are allowed. For example, dvau’, Dvau’, dVau’, DVau’, or dvau’.

apv An optional logical (default FALSE) specifying whether or not to calculate and
plot the age at peak velocity (APGV) when opt) includes ’v’ or ’V’.

bands A character string containing letter(s), or NULL (default) to indicate if CI bands
to be plotted around the distance and velocity curves (and also the APGV). If
NULL, no band plotted. Alternatively, user can specify a string with any one of the
following or their combination(s): 'd' for band around the distance curve, 'v}
for band around the velocity curve, and \code{'p for band around the the
vertical line denoting the APGV parameter. The 'dvp' will include CI bands
for distance and velocity curves, and the APGV.

conf A numeric value (default 0.95) to be used to compute the CI and hence the
width of the bands. See growthparameters() for further details.

resp A character string (default NULL) to specify response variable when process-
ing posterior draws for the univariate_by and multivariate models. See
bsitar() for details on univariate_by and multivariate models

dpar Optional name of a predicted distributional parameter. If specified, expected
predictions of this parameters are returned.

ndraws A positive integer indicating the number of posterior draws to be used in esti-
mation. If NULL (default), all draws are used.

draw_ids An integer indicating the specific posterior draw(s) to be used in estimation (de-
fault NULL).

newdata An optional data frame to be used in estimation. If NULL (default), the newdata
is retrieved from the model.

plot_curves.bgmfit 107

summary A logical indicating whether only the estimate should be computed (TRUE), or
estimate along with SE and CI should be returned (FALSE, default). Setting
summary as FALSE will increase the computation time. Note that summary =
FALSE is must to get the correct estimates when re_formula = NULL.

digits An integer (default 2) to set the decimal argument for the base::round() func-
tion.

re_formula Option to indicate whether or not to include the individual/group-level effects
in the estimation. When NA (default), the individual-level effects are excluded
and therefore population average growth parameters are computed. When NULL,
individual-level effects are included in the computation and hence the growth
parameters estimates returned are individual-specific. In both situations, (i.e„
NA or NULL), continuous and factor covariate(s) are appropriately included in
the estimation. The continuous covariates by default are set to their means (see
numeric_cov_at for details) whereas factor covariates are left unaltered thereby
allowing estimation of covariate specific population average and individual-
specific growth parameter.

numeric_cov_at An optional (named list) argument to specify the value of continuous covari-
ate(s). The default NULL option set the continuous covariate(s) at their mean. Al-
ternatively, a named list can be supplied to manually set these values. For exam-
ple, numeric_cov_at = list(xx = 2) will set the continuous covariate varibale
’xx’ at 2. The argument numeric_cov_at is ignored when no continuous co-
variate is included in the model.

aux_variables An optional argument to specify the variables to be passed to the ipts argument.
This is useful when fitting location scale models and the measurement error
models.

levels_id An optional argument to specify the ids for hierarchical model (default NULL). It
is used only when model is applied to the data with 3 or more levels of hierarchy.
For a two level model, the levels_id is automatically inferred from the model
fit. Even for 3 or higher level model, the levels_id is inferred from the model
fit but under the assumption that hierarchy is specified from lowest to upper most
level i.e, id followed by study where id is nested within the study Note that it
is not guaranteed that the levels_id is sorted correctly, and therefore it is better
to set it manually when fitting a model with three or more levels of hierarchy.

avg_reffects An optional argument (default NULL) to calculate (marginal/average) curves and
growth parameters such as APGV and PGV. If specified, it must be a named list
indicating the over (typically level 1 predictor, such as age), feby (fixed effects,
typically a factor variable), and reby (typically NULL indicating that parameters
are integrated over the random effects) such as avg_reffects = list(feby =
'study', reby = NULL, over = 'age').

ipts An integer to set the length of the predictor variable to get a smooth velocity
curve. The NULL will return original values whereas an integer such as ipts
= 10 (default) will interpolate the predictor. It is important to note that these
interpolations do not alter the range of predictor when calculating population
average and/or the individual specific growth curves.

deriv_model A logical to specify whether to estimate velocity curve from the derivative func-
tion, or the differentiation of the distance curve. The argument deriv_model is

108 plot_curves.bgmfit

set to TRUE for those functions which need velocity curve such as growthparameters()
and plot_curves(), and NULL for functions which explicitly use the distance
curve (i.e., fitted values) such as loo_validation() and plot_ppc().

xrange An integer to set the predictor range (i.e., age) when executing the interpola-
tion via ipts. The default NULL sets the individual specific predictor range
whereas code xrange = 1 sets identical range for individuals within the same
higher grouping variable (e.g., study). Code xrange = 2 sets the identical range
across the entire sample. Lastly, a paired numeric values can be supplied e.g.,
xrange = c(6, 20) to set the range within those values.

xrange_search A vector of length two, or a character string 'range' to set the range of predictor
variable (x) within which growth parameters are searched. This is useful when
there is more than one peak and user wants to summarize peak within a given
range of the x variable. Default xrange_search = NULL.

takeoff A logical (default FALSE) to indicate whether or not to calculate the age at takeoff
velocity (ATGV) and the takeoff growth velocity (TGV) parameters.

trough A logical (default FALSE) to indicate whether or not to calculate the age at ces-
sation of growth velocity (ACGV) and the cessation of growth velocity (CGV)
parameters.

acgv A logical (default FALSE) to indicate whether or not to calculate the age at ces-
sation of growth velocity from the velocity curve. If TRUE, age at cessation
of growth velocity (ACGV) and the cessation growth velocity (CGV) are cal-
culated based on the percentage of the peak growth velocity as defined by the
acgv_velocity argument (see below). The acgv_velocity is typically set at
10 percent of the peak growth velocity. The ACGV and CGV are calculated
along with the the uncertainty (SE and CI) around the ACGV and CGV param-
eters.

acgv_velocity Specify the percentage of the peak growth velocity to be used when estimating
acgv. The default value is 0.10 i.e., 10 percent of the peak growth velocity.

seed An integer (default 123) that is passed to the estimation method.
estimation_method

A character string to specify the estimation method when calculating the ve-
locity from the posterior draws. The 'fitted' method internally calls the
fitted_draws() whereas the option predict calls the predict_draws(). See
brms::fitted.brmsfit() and brms::predict.brmsfit() for derails.

allow_new_levels

A flag indicating if new levels of group-level effects are allowed (defaults to
FALSE). Only relevant if newdata is provided.

sample_new_levels

Indicates how to sample new levels for grouping factors specified in re_formula.
This argument is only relevant if newdata is provided and allow_new_levels is
set to TRUE. If "uncertainty" (default), each posterior sample for a new level
is drawn from the posterior draws of a randomly chosen existing level. Each
posterior sample for a new level may be drawn from a different existing level
such that the resulting set of new posterior draws represents the variation across
existing levels. If "gaussian", sample new levels from the (multivariate) nor-
mal distribution implied by the group-level standard deviations and correlations.

plot_curves.bgmfit 109

This options may be useful for conducting Bayesian power analysis or predict-
ing new levels in situations where relatively few levels where observed in the
old_data. If "old_levels", directly sample new levels from the existing levels,
where a new level is assigned all of the posterior draws of the same (randomly
chosen) existing level.

incl_autocor A flag indicating if correlation structures originally specified via autocor should
be included in the predictions. Defaults to TRUE.

robust A logical to specify the summarize options. If FALSE (the default) the mean
is used as the measure of central tendency and the standard deviation as the
measure of variability. If TRUE, the median and the median absolute deviation
(MAD) are applied instead. Ignored if summary is FALSE.

transform A function applied to individual draws from the posterior distribution, before
computing summaries. The argument transform is based on the marginaleffects::predictions().
This should not be confused with the transform from the brms::posterior_predict()
which is now deprecated.

future A logical (default FALSE) to specify whether or not to perform parallel compu-
tations. If set to TRUE, the future.apply::future_sapply() function is used
to summarize draws.

future_session A character string to set the session type when future = TRUE. The 'multisession'
(default) options sets the multisession whereas the 'multicore' sets the mul-
ticore session. Note that option 'multicore' is not supported on Windows
systems. For more details, see future.apply::future_sapply().

cores Number of cores to be used when running the parallel computations (if future
= TRUE). On non-Windows systems this argument can be set globally via the
mc.cores option. For the default NULL option, the number of cores are set au-
tomatically by calling the future::availableCores(). The number of cores
used are the maximum number of cores avaialble minus one, i.e., future::availableCores()
- 1.

trim A number (default 0) of long line segments to be excluded from plot with option
’u’ or ’a’. See sitar::plot.sitar for details.

layout A character string defining the layout structure of the plot. A 'single' (default)
layout provides overlaid distance and velocity curves on a single plot when opt
includes 'dv', 'Dv', 'dV' or 'DV' options. Similarly, when opt includes 'au',
the adjusted and unadjusted curves are plotted as a single plot. When opt is
a single letter (e.g., 'd'. 'v' 'D', 'V', 'a', 'u'), the 'single' optiion is
ignored. The alternative layout option, the 'facet' uses the facet_wrap from
the ggplot2. to map and draw plot when opt include two or more letters.

linecolor The color of line used when layout is 'facet'. The default is NULL which
internally set the linecolor as 'grey50'.

linecolor1 The color of first line when layout is 'single'. For example, for opt = 'dv',
the color of distance line is controlled by the linecolor1. Default NULL will
internally set linecolor1 as 'orange2'.

linecolor2 The color of second line when layout is 'single'. For example, for opt = 'dv',
the color of velocity line is controlled by the linecolor2. Default NULL sets the
color 'green4' for linecolor2.

110 plot_curves.bgmfit

label.x An optional character string to label the x axis. When NULL (default), the x axis
label is taken from the predictor (e.g., age).

label.y An optional character string to label the y axis. When NULL (default), the y axis
label is taken from the type of plot (e.g., distance, velocity etc.). Note that when
layout option is 'facet', then y axis label is removed and instead the same label
is used as a title.

legendpos An optional character string to specify the position of legends. When NULL
(default), the legend position is set as ’bottom’ for distance and velocity curves
with 'single' layout option for the population average curves, and 'none' for
the individual specific curves. The 'none' suppress all legends that helps in
avoiding printing legends for each individual.

linetype.apv An optional character string to specify the type of the vertical line drawn to mark
the APGV. Default NULL sets the linetype as dotted.

linewidth.main An optional character string to specify the width of the the line for the distance
and velocity curves. The default NULL will set it as 0.35.

linewidth.apv An optional character string to specify the width of the the vertical line drawn
to mark the APGV. The default NULL will set it as 0.25.

linetype.groupby

An optional argument to specify the line type for the distance and velocity curves
when drawing plots for a model that includes factor covariate(s) or when visual-
ising individual specific distance/velocity curves (default NA). Setting it to NULL
will automatically sets the linetype for each factor level or individual This will
also add legends for the factor level covariate or individuals whereas NA will set
a ’solid’ line type and suppress legends. It is recommended to keep the default
NULL option when plotting population average curves for when model included
factor covariates because this would appropriately set the legends otherwise it
is difficult to differentiate which curve belongs to which level of factor. For
individual specific curves, the line type can be set to NULL when the number
of individuals is small. However, when the number of individuals is large, NA
is a better choice which prevents printing a large number of legends for each
individual.

color.groupby An optional argument to specify the line color for distance and velocity curves
when drawing plots for a model that includes factor covariate(s), or when visual-
ising individual specific distance/velocity curves (default NA). Setting it to NULL
will automatically sets the line color for each factor level or individual. This will
also add legends for the factor level covariate or individuals. However, setting it
as NA will set a ’solid’ line type and suppress legends. It is recommended to keep
the default NULL option when plotting population average curves for factor co-
variates because this would appropriately set the legends otherwise it is difficult
to differentiate which curve belongs to which level of the factor. For individual
specific curves, the line color can be set to NULL when the number of individuals
is small. However, when the number of individuals is large, NA is a better choice
which prevents printing a large number of legends for each individual.

band.alpha An optional numeric value to specify the transparency of the CI band(s) around
the distance curve, velocity curve and the line indicating the APGV. The default
NULL will set this value to 0.4.

plot_curves.bgmfit 111

show_age_takeoff

A logical (default TRUE) to indicate whether to display the ATGV line(s) on the
plot.

show_age_peak A logical (default TRUE) to indicate whether to display the APGV line(s) on the
plot.

show_age_cessation

A logical (default TRUE) to indicate whether to display the ACGV line(s) on the
plot.

show_vel_takeoff

A logical (default FALSE) to indicate whether to display the TGV line(s) on the
plot.

show_vel_peak A logical (default FALSE) to indicate whether to display the PGV line(s) on the
plot.

show_vel_cessation

A logical (default FALSE) to indicate whether to display the CGV line(s) on the
plot.

returndata A logical (default FALSE) indicating whether to plot the data or return the data.
If TRUE, the data is returned as a data.frame.

returndata_add_parms

A logical (default FALSE) indicating whether add growth parameters to the returndata.
The returndata_add_parms is ignored when returndata = FALSE. If TRUE,
the growth parameters such as APGV and PGV are added to the returned data.frame.
Note that growth parameters are estimated only when 'opt' argument include
either 'v' or 'V' option and the argument 'apv' is set to TRUE. If any of these
conditions are missing, then returndata_add_parms will ignored ignored.

parms_eval A logical to specify whether or not to get growth parameters on the fly. This is
for internal use only and mainly needed for compatibility across internal func-
tions.

idata_method A character string to indicate the interpolation method. The number of of inter-
polation points is set up the ipts argument. Options available for idata_method
are method 1 (specified as 'm1') and method 2 (specified as 'm2'). The method
1 ('m1') is adapted from the the iapvbs package and is documented here https:
//rdrr.io/github/Zhiqiangcao/iapvbs/src/R/exdata.R whereas method
2 ('m2') is based on the JMbayes package as documented here https://github.
com/drizopoulos/JMbayes/blob/master/R/dynPred_lme.R. The 'm1' method
works by internally constructing the data frame based on the model configura-
tion whereas the method 'm2' uses the exact data frame used in model fit and can
be accessed via fit$data. If idata_method = NULL, default, then method
'm2' is automatically set. Note that method 'm1' might fail in some cases when
model involves covariates particularly when model is fit as univariate_by.
Therefore, it is advised to switch to method 'm2' in case 'm1' results in error.

parms_method A character to specify the method used to when evaluating parms_eval. The
default is getPeak which uses the sitar::getPeak() function from the sitar
package. The alternative option is findpeaks that uses this findpeaks from the
pracma package. This is for internal use only and mainly needed for compati-
bility across internal functions.

https://rdrr.io/github/Zhiqiangcao/iapvbs/src/R/exdata.R
https://rdrr.io/github/Zhiqiangcao/iapvbs/src/R/exdata.R
https://github.com/drizopoulos/JMbayes/blob/master/R/dynPred_lme.R
https://github.com/drizopoulos/JMbayes/blob/master/R/dynPred_lme.R

112 plot_curves.bgmfit

verbose An optional argument (logical, default FALSE) to indicate whether to print infor-
mation collected during setting up the object(s).

fullframe A logical to indicate whether to return fullframe object in which newdata is
bind to the summary estimates. Note that fullframe can not be combined with
summary = FALSE. Furthermore, fullframe can only be used when idata_method
= 'm2'. A particular use case is when fitting univariate_by model. The
fullframe is mainly for internal use only.

dummy_to_factor

A named list (default NULL) that is used to convert dummy variables into a
factor variable. The named elements are factor.dummy, factor.name, and
factor.level. The factor.dummy is a vector of character strings that need to
be converted to a factor variable whereas the factor.name is a single character
string that is used to name the newly created factor variable. The factor.level
is used to name the levels of newly created factor. When factor.name is NULL,
then the factor name is internally set as 'factor.var'. If factor.level is
NULL, then names of factor levels are take from the factor.dummy i.e., the factor
levels are assigned same name as factor.dummy. Note that when factor.level
is not NULL, its length must be same as the length of the factor.dummy.

expose_function

An optional logical argument to indicate whether to expose Stan functions (de-
fault FALSE). Note that if user has already exposed Stan functions during model
fit by setting expose_function = TRUE in the bsitar(), then those exposed
functions are saved and can be used during post processing of the posterior
draws and therefore expose_function is by default set as FALSE in all post
processing functions except optimize_model(). For optimize_model(), the
default setting is expose_function = NULL. The reason is that each optimized
model has different Stan function and therefore it need to be re exposed and
saved. The expose_function = NULL implies that the setting for expose_function
is taken from the original model fit. Note that expose_function must be set to
TRUE when adding fit criteria and/or bayes_R2 during model optimization.

usesavedfuns A logical (default NULL) to indicate whether to use the already exposed and saved
Stan functions. Depending on whether the user have exposed Stan functions
within the bsitar() call via expose_functions argument in the bsitar(), the
usesavedfuns is automatically set to TRUE (if expose_functions = TRUE) or
FALSE (if expose_functions = FALSE). Therefore, manual setting of usesavedfuns
as TRUE/FALSE is rarely needed. This is for internal purposes only and mainly
used during the testing of the functions and therefore should not be used by users
as it might lead to unreliable estimates.

clearenvfuns A logical to indicate whether to clear the exposed function from the environment
(TRUE) or not (FALSE). If NULL (default), then clearenvfuns is set as TRUE when
usesavedfuns is TRUE, and FALSE if usesavedfuns is FALSE.

funlist A list (default NULL) to set function names. This is rarely used because re-
quired functions are automatically retrieved internally. A use case of funlist
when sigma_formula, sigma_formula_gr, or sigma_formula_gr_str uses a
function such as poly(age). See bsitar::bsitar() for details. The funlist
provides list of function names which have been defined externally and are avail-
able in the base::globalenv(). Note that for functions that need distance and

plot_curves.bgmfit 113

velocity curves such as plot_curves(..., opt = 'dv'), the funlist must in-
clude two functions where first will be used for the distance and second for the
velocity.

envir Environment used for function evaluation. The default is NULL which will set
parent.frame() as default environment. Note that since most of post process-
ing functions are based on brms, the functions needed for evaluation should
be in the .GlobalEnv. Therefore, it is strongly recommended to set envir =
globalenv() (or envir = .GlobalEnv). This is particularly true for the deriva-
tives such as velocity curve.

... Further arguments passed to brms::fitted.brmsfit() and brms::predict()
functions.

Details

The plot_curves() is a generic function that allows visualization of following six curves: popula-
tion average distance curve, population average velocity curve, individual-specific distance curves,
individual-specific velocity curves, unadjusted individual growth curves (i.e, observed growth curves),
and the adjusted individual growth curves (adjusted for the model estimated random effects). The
plot_curves() internally calls the growthparameters() function to estimate and summaries the
distance and velocity curves and to estimate growth parameters such as the age at peak growth
velocity (APGV). The plot_curves() in turn calls the fitted_draws() or the predict_draws()
functions to make inference from the posterior draws. Thus, plot_curves() allows plotting fitted or
predicted curves. See fitted_draws() and predict_draws() for details on these functions and
the difference between fitted and predicted values.

Value

A plot object (default), or a data.frame when returndata = TRUE.

Author(s)

Satpal Sandhu <satpal.sandhu@bristol.ac.uk>

See Also

growthparameters() fitted_draws predict_draws()

Examples

Fit Bayesian SITAR model

To avoid mode estimation which takes time, the Bayesian SITAR model fit to
the 'berkeley_exdata' has been saved as an example fit ('berkeley_exfit').
See 'bsitar' function for details on 'berkeley_exdata' and 'berkeley_exfit'.

Check and confirm whether model fit object 'berkeley_exfit' exists
berkeley_exfit <- getNsObject(berkeley_exfit)

model <- berkeley_exfit

114 plot_ppc.bgmfit

Population average distance and velocity curves with default options
plot_curves(model, opt = 'dv')

Individual-specific distance and velocity curves with default options
Note that legendpos = 'none' will suppress the legend positions. This
suppression is useful when plotting individual-specific curves

plot_curves(model, opt = 'DV')

Population average distance and velocity curves with APGV

plot_curves(model, opt = 'dv', apv = TRUE)

Individual-specific distance and velocity curves with APGV

plot_curves(model, opt = 'DV', apv = TRUE)

Population average distance curve, velocity curve, and APGV with CI bands
To construct CI bands, growth parameters are first calculated for each
posterior draw and then summarized across draws. Therefore,summary
option must be set to FALSE

plot_curves(model, opt = 'dv', apv = TRUE, bands = 'dvp', summary = FALSE)

Adjusted and unadjusted individual curves
Note ipts = NULL (i.e., no interpolation of predictor (i.e., age) to plot a
smooth curve). This is because it does not a make sense to interploate data
when estimating adjusted curves. Also, layout = 'facet' (and not default
layout = 'single') is used for the ease of visualizing the plotted
adjusted and unadjusted individual curves. However, these lines can be
superimposed on each other by setting the set layout = 'single'.
For other plots shown above, layout can be set as 'single' or 'facet'

Separate plots for adjusted and unadjusted curves (layout = 'facet')
plot_curves(model, opt = 'au', ipts = NULL, layout = 'facet')

Superimposed adjusted and unadjusted curves (layout = 'single')
plot_curves(model, opt = 'au', ipts = NULL, layout = 'single')

plot_ppc.bgmfit Perform posterior predictive distribution checks

Description

Perform posterior predictive checks with the help of the bayesplot package.

plot_ppc.bgmfit 115

Usage

S3 method for class 'bgmfit'
plot_ppc(
model,
type,
ndraws = NULL,
dpar = NULL,
draw_ids = NULL,
prefix = c("ppc", "ppd"),
group = NULL,
x = NULL,
newdata = NULL,
resp = NULL,
size = 0.25,
alpha = 0.7,
trim = FALSE,
bw = "nrd0",
adjust = 1,
kernel = "gaussian",
n_dens = 1024,
pad = TRUE,
discrete = FALSE,
binwidth = NULL,
bins = NULL,
breaks = NULL,
freq = TRUE,
y_draw = c("violin", "points", "both"),
y_size = 1,
y_alpha = 1,
y_jitter = 0.1,
verbose = FALSE,
deriv_model = NULL,
dummy_to_factor = NULL,
expose_function = FALSE,
usesavedfuns = NULL,
clearenvfuns = NULL,
envir = NULL,
...

)

plot_ppc(model, ...)

Arguments

model An object of class bgmfit.

type Type of the ppc plot as given by a character string. See PPC for an overview of
currently supported types. You may also use an invalid type (e.g. type = "xyz")
to get a list of supported types in the resulting error message.

116 plot_ppc.bgmfit

ndraws A positive integer indicating the number of posterior draws to be used in esti-
mation. If NULL (default), all draws are used.

dpar Optional name of a predicted distributional parameter. If specified, expected
predictions of this parameters are returned.

draw_ids An integer indicating the specific posterior draw(s) to be used in estimation (de-
fault NULL).

prefix The prefix of the bayesplot function to be applied. Either ‘"ppc"‘ (posterior
predictive check; the default) or ‘"ppd"‘ (posterior predictive distribution), the
latter being the same as the former except that the observed data is not shown
for ‘"ppd"‘.

group Optional name of a factor variable in the model by which to stratify the ppc plot.
This argument is required for ppc *_grouped types and ignored otherwise.

x Optional name of a variable in the model. Only used for ppc types having an x
argument and ignored otherwise.

newdata An optional data frame to be used in estimation. If NULL (default), the newdata
is retrieved from the model.

resp A character string (default NULL) to specify response variable when process-
ing posterior draws for the univariate_by and multivariate models. See
bsitar() for details on univariate_by and multivariate models

size, alpha Passed to the appropriate geom to control the appearance of the predictive dis-
tributions.

trim A logical scalar passed to ggplot2::geom_density().
bw, adjust, kernel, n_dens

Optional arguments passed to stats::density() to override default kernel
density estimation parameters. n_dens defaults to 1024.

pad A logical scalar passed to ggplot2::stat_ecdf().

discrete For ppc_ecdf_overlay(), should the data be treated as discrete? The default
is FALSE, in which case geom="line" is passed to ggplot2::stat_ecdf(). If
discrete is set to TRUE then geom="step" is used.

binwidth Passed to ggplot2::geom_histogram() to override the default binwidth.

bins Passed to ggplot2::geom_histogram() to override the default binwidth.

breaks Passed to ggplot2::geom_histogram() as an alternative to binwidth.

freq For histograms, freq=TRUE (the default) puts count on the y-axis. Setting freq=FALSE
puts density on the y-axis. (For many plots the y-axis text is off by default. To
view the count or density labels on the y-axis see the yaxis_text() conve-
nience function.)

y_draw For ppc_violin_grouped(), a string specifying how to draw y: "violin" (de-
fault), "points" (jittered points), or "both".

y_jitter, y_size, y_alpha
For ppc_violin_grouped(), if y_draw is "points" or "both" then y_size,
y_alpha, and y_jitter are passed to to the size, alpha, and width arguments
of ggplot2::geom_jitter() to control the appearance of y points. The default
of y_jitter=NULL will let ggplot2 determine the amount of jitter.

plot_ppc.bgmfit 117

verbose An optional argument (logical, default FALSE) to indicate whether to print infor-
mation collected during setting up the object(s).

deriv_model A logical to specify whether to estimate velocity curve from the derivative func-
tion, or the differentiation of the distance curve. The argument deriv_model is
set to TRUE for those functions which need velocity curve such as growthparameters()
and plot_curves(), and NULL for functions which explicitly use the distance
curve (i.e., fitted values) such as loo_validation() and plot_ppc().

dummy_to_factor

A named list (default NULL) that is used to convert dummy variables into a
factor variable. The named elements are factor.dummy, factor.name, and
factor.level. The factor.dummy is a vector of character strings that need to
be converted to a factor variable whereas the factor.name is a single character
string that is used to name the newly created factor variable. The factor.level
is used to name the levels of newly created factor. When factor.name is NULL,
then the factor name is internally set as 'factor.var'. If factor.level is
NULL, then names of factor levels are take from the factor.dummy i.e., the factor
levels are assigned same name as factor.dummy. Note that when factor.level
is not NULL, its length must be same as the length of the factor.dummy.

expose_function

An optional logical argument to indicate whether to expose Stan functions (de-
fault FALSE). Note that if user has already exposed Stan functions during model
fit by setting expose_function = TRUE in the bsitar(), then those exposed
functions are saved and can be used during post processing of the posterior
draws and therefore expose_function is by default set as FALSE in all post
processing functions except optimize_model(). For optimize_model(), the
default setting is expose_function = NULL. The reason is that each optimized
model has different Stan function and therefore it need to be re exposed and
saved. The expose_function = NULL implies that the setting for expose_function
is taken from the original model fit. Note that expose_function must be set to
TRUE when adding fit criteria and/or bayes_R2 during model optimization.

usesavedfuns A logical (default NULL) to indicate whether to use the already exposed and saved
Stan functions. Depending on whether the user have exposed Stan functions
within the bsitar() call via expose_functions argument in the bsitar(), the
usesavedfuns is automatically set to TRUE (if expose_functions = TRUE) or
FALSE (if expose_functions = FALSE). Therefore, manual setting of usesavedfuns
as TRUE/FALSE is rarely needed. This is for internal purposes only and mainly
used during the testing of the functions and therefore should not be used by users
as it might lead to unreliable estimates.

clearenvfuns A logical to indicate whether to clear the exposed function from the environment
(TRUE) or not (FALSE). If NULL (default), then clearenvfuns is set as TRUE when
usesavedfuns is TRUE, and FALSE if usesavedfuns is FALSE.

envir Environment used for function evaluation. The default is NULL which will set
parent.frame() as default environment. Note that since most of post process-
ing functions are based on brms, the functions needed for evaluation should
be in the .GlobalEnv. Therefore, it is strongly recommended to set envir =
globalenv() (or envir = .GlobalEnv). This is particularly true for the deriva-
tives such as velocity curve.

118 predict_draws.bgmfit

... Additional arguments passed to the brms::pp_check.brmsfit() function. Please
see brms::pp_check.brmsfit() for details.

Details

The plot_ppc() is a wrapper around the brms::pp_check().

Value

A ggplot object that can be further customized using the ggplot2 package.

Author(s)

Satpal Sandhu <satpal.sandhu@bristol.ac.uk>

Examples

Fit Bayesian SITAR model

To avoid mode estimation which takes time, the Bayesian SITAR model fit to
the 'berkeley_exdata' has been saved as an example fit ('berkeley_exfit').
See 'bsitar' function for details on 'berkeley_exdata' and 'berkeley_exfit'.

Check and confirm whether model fit object 'berkeley_exfit' exists
berkeley_exfit <- getNsObject(berkeley_exfit)

model <- berkeley_exfit

plot_ppc(model, ndraws = 100)

predict_draws.bgmfit Predicted values from the posterior predictive distribution

Description

The predict_draws() is a wrapper around the brms::predict.brmsfit() function to obtain pre-
dicted values (and their summary) from the posterior distribution. See brms::predict.brmsfit()
for details.

Usage

S3 method for class 'bgmfit'
predict_draws(
model,
newdata = NULL,
resp = NULL,
dpar = NULL,
ndraws = NULL,

predict_draws.bgmfit 119

draw_ids = NULL,
re_formula = NA,
allow_new_levels = FALSE,
sample_new_levels = "uncertainty",
incl_autocor = TRUE,
numeric_cov_at = NULL,
levels_id = NULL,
avg_reffects = NULL,
aux_variables = NULL,
ipts = 10,
deriv = 0,
deriv_model = TRUE,
summary = TRUE,
robust = FALSE,
transform = NULL,
probs = c(0.025, 0.975),
xrange = NULL,
xrange_search = NULL,
parms_eval = FALSE,
parms_method = "getPeak",
idata_method = NULL,
verbose = FALSE,
fullframe = NULL,
dummy_to_factor = NULL,
expose_function = FALSE,
usesavedfuns = NULL,
clearenvfuns = NULL,
funlist = NULL,
envir = NULL,
...

)

predict_draws(model, ...)

Arguments

model An object of class bgmfit.
newdata An optional data frame to be used in estimation. If NULL (default), the newdata

is retrieved from the model.
resp A character string (default NULL) to specify response variable when process-

ing posterior draws for the univariate_by and multivariate models. See
bsitar() for details on univariate_by and multivariate models

dpar Optional name of a predicted distributional parameter. If specified, expected
predictions of this parameters are returned.

ndraws A positive integer indicating the number of posterior draws to be used in esti-
mation. If NULL (default), all draws are used.

draw_ids An integer indicating the specific posterior draw(s) to be used in estimation (de-
fault NULL).

120 predict_draws.bgmfit

re_formula Option to indicate whether or not to include the individual/group-level effects
in the estimation. When NA (default), the individual-level effects are excluded
and therefore population average growth parameters are computed. When NULL,
individual-level effects are included in the computation and hence the growth
parameters estimates returned are individual-specific. In both situations, (i.e„
NA or NULL), continuous and factor covariate(s) are appropriately included in
the estimation. The continuous covariates by default are set to their means (see
numeric_cov_at for details) whereas factor covariates are left unaltered thereby
allowing estimation of covariate specific population average and individual-
specific growth parameter.

allow_new_levels

A flag indicating if new levels of group-level effects are allowed (defaults to
FALSE). Only relevant if newdata is provided.

sample_new_levels

Indicates how to sample new levels for grouping factors specified in re_formula.
This argument is only relevant if newdata is provided and allow_new_levels is
set to TRUE. If "uncertainty" (default), each posterior sample for a new level
is drawn from the posterior draws of a randomly chosen existing level. Each
posterior sample for a new level may be drawn from a different existing level
such that the resulting set of new posterior draws represents the variation across
existing levels. If "gaussian", sample new levels from the (multivariate) nor-
mal distribution implied by the group-level standard deviations and correlations.
This options may be useful for conducting Bayesian power analysis or predict-
ing new levels in situations where relatively few levels where observed in the
old_data. If "old_levels", directly sample new levels from the existing levels,
where a new level is assigned all of the posterior draws of the same (randomly
chosen) existing level.

incl_autocor A flag indicating if correlation structures originally specified via autocor should
be included in the predictions. Defaults to TRUE.

numeric_cov_at An optional (named list) argument to specify the value of continuous covari-
ate(s). The default NULL option set the continuous covariate(s) at their mean. Al-
ternatively, a named list can be supplied to manually set these values. For exam-
ple, numeric_cov_at = list(xx = 2) will set the continuous covariate varibale
’xx’ at 2. The argument numeric_cov_at is ignored when no continuous co-
variate is included in the model.

levels_id An optional argument to specify the ids for hierarchical model (default NULL). It
is used only when model is applied to the data with 3 or more levels of hierarchy.
For a two level model, the levels_id is automatically inferred from the model
fit. Even for 3 or higher level model, the levels_id is inferred from the model
fit but under the assumption that hierarchy is specified from lowest to upper most
level i.e, id followed by study where id is nested within the study Note that it
is not guaranteed that the levels_id is sorted correctly, and therefore it is better
to set it manually when fitting a model with three or more levels of hierarchy.

avg_reffects An optional argument (default NULL) to calculate (marginal/average) curves and
growth parameters such as APGV and PGV. If specified, it must be a named list
indicating the over (typically level 1 predictor, such as age), feby (fixed effects,
typically a factor variable), and reby (typically NULL indicating that parameters

predict_draws.bgmfit 121

are integrated over the random effects) such as avg_reffects = list(feby =
'study', reby = NULL, over = 'age').

aux_variables An optional argument to specify the variable(s) that can be passed to the ipts
argument (see below). This is useful when fitting location scale models and
measurement error models. An indication to use aux_variables is when post
processing functions throw an error such as variable 'x' not found either
'data' or 'data2'

ipts An integer to set the length of the predictor variable to get a smooth velocity
curve. The NULL will return original values whereas an integer such as ipts
= 10 (default) will interpolate the predictor. It is important to note that these
interpolations do not alter the range of predictor when calculating population
average and/or the individual specific growth curves.

deriv An integer to indicate whether to estimate distance curve or its derivative (i.e.,
velocity curve). The deriv = 0 (default) is for the distance curve whereas deriv
= 1 for the velocity curve.

deriv_model A logical to specify whether to estimate velocity curve from the derivative func-
tion, or the differentiation of the distance curve. The argument deriv_model is
set to TRUE for those functions which need velocity curve such as growthparameters()
and plot_curves(), and NULL for functions which explicitly use the distance
curve (i.e., fitted values) such as loo_validation() and plot_ppc().

summary A logical indicating whether only the estimate should be computed (TRUE), or
estimate along with SE and CI should be returned (FALSE, default). Setting
summary as FALSE will increase the computation time. Note that summary =
FALSE is must to get the correct estimates when re_formula = NULL.

robust A logical to specify the summarize options. If FALSE (the default) the mean
is used as the measure of central tendency and the standard deviation as the
measure of variability. If TRUE, the median and the median absolute deviation
(MAD) are applied instead. Ignored if summary is FALSE.

transform A function applied to individual draws from the posterior distribution, before
computing summaries. The argument transform is based on the marginaleffects::predictions().
This should not be confused with the transform from the brms::posterior_predict()
which is now deprecated.

probs The percentiles to be computed by the quantile function. Only used if summary
is TRUE.

xrange An integer to set the predictor range (i.e., age) when executing the interpola-
tion via ipts. The default NULL sets the individual specific predictor range
whereas code xrange = 1 sets identical range for individuals within the same
higher grouping variable (e.g., study). Code xrange = 2 sets the identical range
across the entire sample. Lastly, a paired numeric values can be supplied e.g.,
xrange = c(6, 20) to set the range within those values.

xrange_search A vector of length two, or a character string 'range' to set the range of predictor
variable (x) within which growth parameters are searched. This is useful when
there is more than one peak and user wants to summarize peak within a given
range of the x variable. Default xrange_search = NULL.

122 predict_draws.bgmfit

parms_eval A logical to specify whether or not to get growth parameters on the fly. This is
for internal use only and mainly needed for compatibility across internal func-
tions.

parms_method A character to specify the method used to when evaluating parms_eval. The
default is getPeak which uses the sitar::getPeak() function from the sitar
package. The alternative option is findpeaks that uses this findpeaks from the
pracma package. This is for internal use only and mainly needed for compati-
bility across internal functions.

idata_method A character string to indicate the interpolation method. The number of of inter-
polation points is set up the ipts argument. Options available for idata_method
are method 1 (specified as 'm1') and method 2 (specified as 'm2'). The method
1 ('m1') is adapted from the the iapvbs package and is documented here https:
//rdrr.io/github/Zhiqiangcao/iapvbs/src/R/exdata.R whereas method
2 ('m2') is based on the JMbayes package as documented here https://github.
com/drizopoulos/JMbayes/blob/master/R/dynPred_lme.R. The 'm1' method
works by internally constructing the data frame based on the model configura-
tion whereas the method 'm2' uses the exact data frame used in model fit and can
be accessed via fit$data. If idata_method = NULL, default, then method
'm2' is automatically set. Note that method 'm1' might fail in some cases when
model involves covariates particularly when model is fit as univariate_by.
Therefore, it is advised to switch to method 'm2' in case 'm1' results in error.

verbose An optional argument (logical, default FALSE) to indicate whether to print infor-
mation collected during setting up the object(s).

fullframe A logical to indicate whether to return fullframe object in which newdata is
bind to the summary estimates. Note that fullframe can not be combined with
summary = FALSE. Furthermore, fullframe can only be used when idata_method
= 'm2'. A particular use case is when fitting univariate_by model. The
fullframe is mainly for internal use only.

dummy_to_factor

A named list (default NULL) that is used to convert dummy variables into a
factor variable. The named elements are factor.dummy, factor.name, and
factor.level. The factor.dummy is a vector of character strings that need to
be converted to a factor variable whereas the factor.name is a single character
string that is used to name the newly created factor variable. The factor.level
is used to name the levels of newly created factor. When factor.name is NULL,
then the factor name is internally set as 'factor.var'. If factor.level is
NULL, then names of factor levels are take from the factor.dummy i.e., the factor
levels are assigned same name as factor.dummy. Note that when factor.level
is not NULL, its length must be same as the length of the factor.dummy.

expose_function

An optional logical argument to indicate whether to expose Stan functions (de-
fault FALSE). Note that if user has already exposed Stan functions during model
fit by setting expose_function = TRUE in the bsitar(), then those exposed
functions are saved and can be used during post processing of the posterior
draws and therefore expose_function is by default set as FALSE in all post
processing functions except optimize_model(). For optimize_model(), the
default setting is expose_function = NULL. The reason is that each optimized

https://rdrr.io/github/Zhiqiangcao/iapvbs/src/R/exdata.R
https://rdrr.io/github/Zhiqiangcao/iapvbs/src/R/exdata.R
https://github.com/drizopoulos/JMbayes/blob/master/R/dynPred_lme.R
https://github.com/drizopoulos/JMbayes/blob/master/R/dynPred_lme.R

predict_draws.bgmfit 123

model has different Stan function and therefore it need to be re exposed and
saved. The expose_function = NULL implies that the setting for expose_function
is taken from the original model fit. Note that expose_function must be set to
TRUE when adding fit criteria and/or bayes_R2 during model optimization.

usesavedfuns A logical (default NULL) to indicate whether to use the already exposed and saved
Stan functions. Depending on whether the user have exposed Stan functions
within the bsitar() call via expose_functions argument in the bsitar(), the
usesavedfuns is automatically set to TRUE (if expose_functions = TRUE) or
FALSE (if expose_functions = FALSE). Therefore, manual setting of usesavedfuns
as TRUE/FALSE is rarely needed. This is for internal purposes only and mainly
used during the testing of the functions and therefore should not be used by users
as it might lead to unreliable estimates.

clearenvfuns A logical to indicate whether to clear the exposed function from the environment
(TRUE) or not (FALSE). If NULL (default), then clearenvfuns is set as TRUE when
usesavedfuns is TRUE, and FALSE if usesavedfuns is FALSE.

funlist A list (default NULL) to set function names. This is rarely used because re-
quired functions are automatically retrieved internally. A use case of funlist
when sigma_formula, sigma_formula_gr, or sigma_formula_gr_str uses a
function such as poly(age). See bsitar::bsitar() for details. The funlist
provides list of function names which have been defined externally and are avail-
able in the base::globalenv(). Note that for functions that need distance and
velocity curves such as plot_curves(..., opt = 'dv'), the funlist must in-
clude two functions where first will be used for the distance and second for the
velocity.

envir Environment used for function evaluation. The default is NULL which will set
parent.frame() as default environment. Note that since most of post process-
ing functions are based on brms, the functions needed for evaluation should
be in the .GlobalEnv. Therefore, it is strongly recommended to set envir =
globalenv() (or envir = .GlobalEnv). This is particularly true for the deriva-
tives such as velocity curve.

... Additional arguments passed to the brms::predict.brmsfit() function. Please
see brms::predict.brmsfit() for details on various options available.

Details

The predict_draws() function computed the fitted values from the posterior distribution. The
brms::predict.brmsfit() function from the brms package can used to get the predicted (dis-
tance) values when outcome (e.g., height) is untransformed. However, when the outcome is log or
square root transformed, the brms::predict.brmsfit() function will return the fitted curve on the
log or square root scale whereas the predict_draws() function returns the fitted values on the orig-
inal scale. Furthermore, the predict_draws() also compute the first derivative of (velocity) that too
on the original scale after making required back-transformation. Except for these differences, both
these functions (i.e., brms::predict.brmsfit() and predict_draws()) work in the same man-
ner. In other words, user can specify all the options available in the brms::predict.brmsfit().

Value

An array of predicted response values. See brms::predict.brmsfit() for details.

124 update_model.bgmfit

Author(s)

Satpal Sandhu <satpal.sandhu@bristol.ac.uk>

See Also

brms::predict.brmsfit()

Examples

Fit Bayesian SITAR model

To avoid mode estimation which takes time, the Bayesian SITAR model fit to
the 'berkeley_exdata' has been saved as an example fit ('berkeley_exfit').
See 'bsitar' function for details on 'berkeley_exdata' and 'berkeley_exfit'.

Check and confirm whether model fit object 'berkeley_exfit' exists
berkeley_exfit <- getNsObject(berkeley_exfit)

model <- berkeley_exfit

Population average distance curve
predict_draws(model, deriv = 0, re_formula = NA)

Individual-specific distance curves
predict_draws(model, deriv = 0, re_formula = NULL)

Population average velocity curve
predict_draws(model, deriv = 1, re_formula = NA)

Individual-specific velocity curves
predict_draws(model, deriv = 1, re_formula = NULL)

update_model.bgmfit Update model

Description

The update_model() is a wrapper around the update() function in the brms package which refits
the model as per the user specified updated arguments.

Usage

S3 method for class 'bgmfit'
update_model(
model,
newdata = NULL,

update_model.bgmfit 125

recompile = NULL,
expose_function = FALSE,
verbose = FALSE,
check_newargs = FALSE,
envir = NULL,
...

)

update_model(model, ...)

Arguments

model An object of class bgmfit.

newdata An optional data.frame to be used when updating the model. If NULL (default),
the data used in the original model fit is re used. Note that data-dependent default
priors are not updated automatically.

recompile A logical to indicate whether the Stan model should be recompiled. When NULL
(default), update_model() tries to figure out internally whether recompilation
is required or not. Setting recompile to FALSE will ignore Stan code changing
arguments.

expose_function

An optional logical argument to indicate whether to expose Stan functions (de-
fault FALSE). Note that if user has already exposed Stan functions during model
fit by setting expose_function = TRUE in the bsitar(), then those exposed
functions are saved and can be used during post processing of the posterior
draws and therefore expose_function is by default set as FALSE in all post
processing functions except optimize_model(). For optimize_model(), the
default setting is expose_function = NULL. The reason is that each optimized
model has different Stan function and therefore it need to be re exposed and
saved. The expose_function = NULL implies that the setting for expose_function
is taken from the original model fit. Note that expose_function must be set to
TRUE when adding fit criteria and/or bayes_R2 during model optimization.

verbose An optional argument (logical, default FALSE) to indicate whether to print infor-
mation collected during setting up the object(s).

check_newargs A logical (default FALSE) to check whether arguments in the original model fit
and the update_model are same. When check_newargs = TRUE and arguments
are same, it implies that update is not needed and hence the original model object
is returned along with the message if verbose = TRUE.

envir Environment used for function evaluation. The default is NULL which will set
parent.frame() as default environment. Note that since most of post process-
ing functions are based on brms, the functions needed for evaluation should
be in the .GlobalEnv. Therefore, it is strongly recommended to set envir =
globalenv() (or envir = .GlobalEnv). This is particularly true for the deriva-
tives such as velocity curve.

... Other arguments passed to brms::brm().

126 update_model.bgmfit

Details

This is an adapted version of the update() function from available the thebrms package.

Value

An updated object of class brmsfit.

Author(s)

Satpal Sandhu <satpal.sandhu@bristol.ac.uk>

Examples

Fit Bayesian SITAR model

To avoid mode estimation which takes time, the Bayesian SITAR model fit to
the 'berkeley_exdata' has been saved as an example fit ('berkeley_exfit').
See 'bsitar' function for details on 'berkeley_exdata' and 'berkeley_exfit'.

Check and confirm whether model fit object 'berkeley_exfit' exists
berkeley_exfit <- getNsObject(berkeley_exfit)

model <- berkeley_exfit

Update model
Note that in case all arguments supplied to the update_model() call are
same as the original model fit (checked via check_newargs = TRUE), then
original model object is returned.
To explicitly get this information whether model is being updated or not,
user can set verbose = TRUE. The verbose = TRUE also useful in getting the
information regarding what all arguments have been changed as compared to
the original model.

model2 <- update_model(model, df = 5, check_newargs = TRUE, verbose = TRUE)

Index

∗ datasets
berkeley, 6
berkeley_exdata, 7
berkeley_exfit, 8

add_model_criterion
(add_model_criterion.bgmfit), 3

add_model_criterion.bgmfit, 3

base::globalenv(), 47, 55, 67, 82, 93, 103,
112, 123

base::on.exit(), 66, 67, 80, 81, 91, 92
base::round(), 54, 60, 75, 86, 97, 107
base::Vectorize(), 42
berkeley, 6, 7, 8
berkeley_exdata, 7, 8
berkeley_exfit, 8
brms::add_criterion(), 3, 72, 96–98
brms::add_ic(), 5
brms::add_loo, 3, 5
brms::add_waic(), 5
brms::bayes_R2(), 3, 5
brms::bridge_sampler(), 33
brms::brm(), 16, 17, 19, 20, 30–35, 37, 38,

70, 125
brms::brmsfit_needs_refit(), 35
brms::brmsformula(), 15, 31, 34, 38
brms::conditional_effects, 103
brms::conditional_effects(), 103
brms::custom_family(), 19
brms::fitted.brmsfit, 48, 93
brms::fitted.brmsfit(), 43, 48, 52, 93,

108
brms::hypothesis(), 34
brms::lf(), 17, 18
brms::loo(), 37, 69, 72
brms::loo_moment_match(), 70
brms::nlf(), 17, 18
brms::opencl(), 33

brms::posterior_predict(), 46, 51, 64, 78,
89, 109, 121

brms::pp_check(), 37, 118
brms::pp_check.brmsfit(), 118
brms::predict.brmsfit(), 52, 93, 108, 118,

123, 124
brms::prior(), 21, 26, 37, 38
brms::reloo(), 70
brms::save_pars(), 34
brms::set_prior(), 34
brms::stancode(), 31
brms::standata(), 31
brms::stanvar(), 31
brms::validate_prior(), 31
bsitar, 9
bsitar(), 4, 5, 44, 47, 51, 55, 59, 67, 71, 74,

81, 84, 92, 95, 97, 101, 102, 106,
112, 116, 117, 119, 122, 123, 125

expose_model_functions
(expose_model_functions.bgmfit),
41

expose_model_functions.bgmfit, 41

fitted_draws, 113
fitted_draws (fitted_draws.bgmfit), 43
fitted_draws(), 48, 52, 56, 108, 113
fitted_draws.bgmfit, 43
future, 35
future.apply::future_sapply(), 54, 61,

76, 87, 109
future::availableCores(), 4, 54, 71, 77,

87, 109

getNsObject, 49
ggplot2::geom_density(), 116
ggplot2::geom_histogram(), 116
ggplot2::geom_jitter(), 116
ggplot2::stat_ecdf(), 116

127

128 INDEX

growthparameters
(growthparameters.bgmfit), 50

growthparameters(), 106, 113
growthparameters.bgmfit, 50
growthparameters_comparison

(growthparameters_comparison.bgmfit),
57

growthparameters_comparison(), 50
growthparameters_comparison.bgmfit, 57

loo, 70
loo::loo_compare(), 70, 72
loo::loo_moment_match(), 70
loo_compare, 4
loo_moment_match, 70
loo_validation (loo_validation.bgmfit),

69
loo_validation.bgmfit, 69

make_conditions, 100
marginal_comparison

(marginal_comparison.bgmfit),
73

marginal_comparison.bgmfit, 73
marginal_draws (marginal_draws.bgmfit),

83
marginal_draws(), 104
marginal_draws.bgmfit, 83
marginaleffects::avg_comparisons(), 57,

62, 68, 73, 77, 82, 88
marginaleffects::avg_predictions(), 83,

87, 88, 93
marginaleffects::comparisons(), 57, 62,

63, 68, 73, 77, 82, 88, 89
marginaleffects::datagrid(), 59, 66, 74,

75, 85
marginaleffects::plot_comparisons(),

62, 68, 77, 82
marginaleffects::plot_predictions(),

83, 88, 93
marginaleffects::posterior_draws(), 63
marginaleffects::predictions(), 46, 51,

64, 77, 78, 83, 87–89, 93, 109, 121

optimize_model (optimize_model.bgmfit),
94

optimize_model(), 5, 47, 55, 67, 71, 81, 92,
97, 102, 112, 117, 122, 125

optimize_model.bgmfit, 94

options, 33, 35

parallel::makeCluster(), 62
pareto_k_ids, 70
plan, 35
plot_conditional_effects

(plot_conditional_effects.bgmfit),
98

plot_conditional_effects.bgmfit, 98
plot_curves (plot_curves.bgmfit), 104
plot_curves.bgmfit, 104
plot_ppc (plot_ppc.bgmfit), 114
plot_ppc.bgmfit, 114
PPC, 115
predict_draws (predict_draws.bgmfit),

118
predict_draws(), 52, 56, 108, 113, 123
predict_draws.bgmfit, 118

reloo, 70
rstan::expose_stan_functions(), 41, 42
rstan::rstan(), 35
rstan::stan_model, 34

saveRDS, 34, 35, 96
sitar::getPeak(), 46, 54, 56, 63, 78, 111,

122
sitar::getTakeoff(), 56, 63, 78
sitar::getTrough(), 56, 63, 78
sitar::plot.sitar, 109
sitar::sitar(), 15, 17, 36
sitar::velout(), 32
sitar::zapvelout(), 32
splines::ns(), 36
stats::density(), 116
stats::model.matrix(), 15

update, 34
update_model, 97
update_model (update_model.bgmfit), 124
update_model.bgmfit, 124

yaxis_text(), 116

	add_model_criterion.bgmfit
	berkeley
	berkeley_exdata
	berkeley_exfit
	bsitar
	expose_model_functions.bgmfit
	fitted_draws.bgmfit
	getNsObject
	growthparameters.bgmfit
	growthparameters_comparison.bgmfit
	loo_validation.bgmfit
	marginal_comparison.bgmfit
	marginal_draws.bgmfit
	optimize_model.bgmfit
	plot_conditional_effects.bgmfit
	plot_curves.bgmfit
	plot_ppc.bgmfit
	predict_draws.bgmfit
	update_model.bgmfit
	Index

